
Media Independent Interfaoe

Final Report

MS 2-2-5250
SPERRY SPACE SYSTEMS

P.O. BOX 52199

PHOENIX, ARIZONA
85072-2199

N88-I_44_

Uncla_

G3161 0120342

/l,",,9_',q o,,_- ,'7_6__3

t f "

!

id •

Media Independent Interfaoe

Final Report

J

T

MS 2-2-5250

SPERRY SPACE SYSTEMS

P.O. BOX 52199

PHOENIX, ARIZONA
85072-2199

2

--4 4

Page i1
21 July 1987

CONTENTS

1

1.1

1.2

1.3

1.4

1.5

1.6

2

2.1

2.2

2.2.1

2.2.1.1

2.2.2

2.2.2.1

22.3

2 2.3.1

2 2.3.2

22.4

22.5

2 2.5.1

2 2.5.2

2 2.5.3

2 3

23.1

23.2

2 3.2.1

2 3.2.2

2 3.2.3

2 3.2.4

3

3._t

3.2

3_ -
3.3.1

3.3.2

3.3.3

3.3.4

3.4

3.4.1

3.4.1.1

INTRODUCTION 1

PURPOSE 1

ABBREVIATIONS 1

DEFINITIONS 1

DOCUMENTS 2

MII DEFINITION 2

MII REQUIREMENTS AND GOALS 4

]CD DESCRIPTION 6

LEVELS OF INTERFACE 6

FUNCTIONAL INTERFACES 6

MAC-LLC INTERFACE 6

LLC-MAC SERVICE PRIMITIVES 7

MAC-SMT INTERFACE 8

SYSTEM MANAGEMENT-LLC(SMT-LLC) SERVICE PRIMITIVES

AND PARAMETERS 8

INTERFACE CONTROL iNFORMATION 10

DATA TRANSFER SYNTAX le

ENCODING RULES 11

PROTOCOL DATA UNITS 11

DATA CHANNEL ARCHITECTURE 11

DATA CHANNEL DEFINITIONS 11

SYNCHRONIZATION 11

BUFFER MANAGEMENT 12

ELECTRICAL/PHYSICAL iNTERFACE 12

BUS STANDARDS 13

IMPLEMENTATION OPTIONS 13

PHYSICAL PARTITIONING OF FUNCTIONS 13

SIMPLE BIU OPTION 14

MEDIUM SPEED BIU OPTION 14

HIGH SPEED BIU OPTION 17

DEMONSTRATION SYSTEM 17

DEMONSTRATION GOALS 17

SYSTEM DESCRIPTION 17

INTERFACE IMPLEMENTATION 19

PRIMITIVES t9

BUFFER MANAGEMENT 19

OPERATING SYSTEM 19

ASN.1 SYNTAX 20

DEMONSTRATION SYSTEM DETAILED DESCRIPTION . . 20

COMPONENT IMPLEMENTATION 2e

TOKEN MAC 2e

3,4.1.1.1 MAC PROCESS 21

3.4.1.1.2 INTERRUPT SERVICERS 21

3.4.1.2 STAR*BUS MAC 22

3.4.1.2.1 MAC PROCESS 22

Pageiii
21 July 1987

3.4._.2.2 INTERRUPTSERVICERS.............. 22
3.4.1 3 LLC 23
3.4.1
3.4.1
3.4.1
5.4.t
3.4.1
3.4.1
3.5

3.1 SEND...................... 23
3.2 RECEIVE.................... 23
4 STATIONMANAGEMENT............... 23
4.1 COMMANDINTERPRETER.............. 24
4.2 DISPLAY.................... 24
4.3 STATISTICS................... 24

DEMONSTRATIONTESTING............. 24

AppendixA OPERATOR'SMANUAL
AppendixB TOKENBUS/STAR*BUSMEDIUMACCESSCONTROL

SOFTWAREUSERSMANUAL

-- 4

Page I

21 July 1987

I INTRODUCTION

I.I PURPOSE

This report describes the work done on the MII ICD program

and makes recommendations based on it. The final output of

this study program is an Interface Control Document (ICD)

for a Media Independent Interface which is a separate

document. This report will provide explanations and
rationale for the content of the ICD itself. A basic

familiarity with the ISO OSI 7 layer model and the IEEE 802

specifications is very helpful in understanding the contents_

of this report. _" _1.2 ABBREVIATIONS

ASN.I - Abstract Syntax Notation One

CPU - Central Processing Unit
DIS - Draft International Standard

ICD - Interface Control Document

ICI - Interface Control Information

IEEE - Institute of Electrical Electronics Engineers

ISO - Internation Standards Organization
LAN - Local Area Network

LLC - Logical Link Control
MAC - Media Access Control

MII - Media Independent Interface

OSI - Open Systems Interconnection
PDU - Protocol Data Unit

SDU - Service Data Unit

SM - St_tion Management

1.3 DEFINITIONS

ICI - Interface Control Information

transferred between adjacent layers to

joint operation

- information

coordinate their

PDU - Protocol Data Unit - a unit of data specified in a

protocol and consisting of protocol information and possibly
user data.

MII FINAL REPORT
INTRODUCTION

Page 2

21 July 1987

SDU - Ser_viQe Data Unit - an amount of interface data whose

identity is preserved from one end of a connection to the
other.

1.4 DOCUMENTS

ANSI X3T9/84-100 Fiber Distributed Data Interface (FDDI)

IEEE 802.1 (still draft) Network management

IEEE 802.2 or ISO 8802/2 Logical Link Control (LLC)

IEEE 802.3 or ISO 8802/3 Carrier Sense Media Access

(CSMA/CD)

IEEE 802.4 or ISO 8802/4 Token Bus

IEEE 802.5 or ISO 8802/5 Token Ring

IEEE 802.7 or ISO 8802/7 Slotted Ring

ISO DIS 8824 Specification of Abstract Syntax Notation

ISO DIS 8825 Basic Encoding for Abstract Syntax Notation
ISO 7498 ISO OSI Basic Reference Model

ISO 7498 DAD1 oonnectionless Data Transmission

ISO DP 7498/4 Management Framework

Sperry Report 2055-04 thru 2055-8

1.5 MII DEFINITION

The MII deals with the Data Link Layer, Layer 2 of the ISO

7-Layer communication model. The IEEE 802 specifications

divide the Data Link into two sub-layers; the Media Access

Control (MAC) is the lower sub-layer and the Logical Link

Control (LLC) is the higher sub-layer. The intent of the

802 committee is to provide a single set of LLC functions

that supports several different MAC and Physical layer

implementations.

The goal of the MII project is to define an interface

between these two sub-layers such that all media dependent
functions of the Data Link reside in the MAC and all media

independent functions reside in the LLC. This division of

functig_ results in an interface between the MAC and LLC

sub-layers which has been called the Media Independent

Interface or MII. The MII concept is illustrated in Figure

1. The object of this division of function is to allow

different media access and physical layers to be interfaced

to the same upper layer implementation. The intent is to

specify this interface to the level such that plug

compatible interchangeable modules can be designed

independently for both MACs and LLCs. In order to achieve

this goal, the further complications added by the Station

Management function must be considered. The Station

Management entity must communicate with all layers and

sub-layers of a given station as it is responsible for

MEDIA'
INDEPENDENT

INTERFACE

(MII)

7 LAYER
INTERFACE

UNIT

UPPFER
LAYERS

LOGICAL LINK

CONTROL (LLC)

MEDIA ACCESS

CONTROL (MAC)

PHYSICAL LAYER

DATA LINK
LAYER

Fig 1 MEDIA INDEPENDENT INTERFACE

MII FINAL REPORT

INTRODUCTION
Page 4

21 July 1987

insuring- co-operation of all layers within the station and

maintaining the health of the station as a whole. It

therefore follows that the the interface must not only

provide for MAC-LLC communication, but also MAC to Station

Management (SMT) communication. Figure 2 shows the location

of the entire MII boundary.

1.6 MII REQUIREMENTS AND GOALS

The MII requirements are as follows:

I .

°

Support the functional independence between the

interfacing entities, except to the extent of

planned interaction through identified (and

"controlled") primitives. This feature would make

internal changes in the LLC, SM, or MAC transparent
to each other.

Support asynchronous operation of interfacin_i_

entities. 4
Support the operation of high speed LANs, with bit

rates on the order of I00 MBPS. Both Star*Bus and

FDDI media bit rates are of this magnitude.

. Support multiples of each type entity, to

facilitate bridge, router, and gateway design and

multiple port networking.

. Support ease in reconfiguration, allow for

replacing MAC or Physical Layer elements, without

modification to the MII or other interfacing
elements.

6. Allow for parallel processing and provide for event

driven operations in order to support priority

_ transmissions and transfer delay minimization.

7- Use industry accepted standards, especially ISO and
IEEE 802.

8. Provide complete interchangeability between MACs.

9. Be expandable yet retain downwards compatibility.

MAC-LLC

I/F

UPPER LAYERS

',l Ii _

LLC

MAC

PHYSICAL

LLC

LME

MAC

LME

STATION

MGR

MII

BOUNDARY

MAC-SM

I/F

Figure 2 MII BOUNDARY

MII FINAL REPORT

ICD DESCRIPTION
Page 6

21 July 1987

2 ICD DESCRIPTION

This section describes the contents of the final ICD

specification. It is intended to aid in the understanding

of the ICD by providing explanations for the features of the

architecture and how they relate to the ICD specifications.

2.1 LEVELS OF INTERFACE

The MII deals with three levels of interface: functional,

electrical, and physical. The functional level deals with

the primitives which are passed between entities and their

meanings or interpretations. The design of this level is

patterned after the IEEE and ISO specifications. The

functions contained in these specifications and the logic
contained therein are considered at this level. The

electrical interface encompasses all aspects of the bus_i

signals involved, including voltage level, pin assignments,i_

timing specifications,etc. The physical interface deals_

with form and fit, module dimensions, connector_
specifications, etc. Each of these levels of the interface

will be discussed in detail in the subsequent sections.

2.2 FUNCTIONAL INTERFACES

The functional interface deals with the meaning of the data

which crosses the MII boundary. It is involved with what

data crosses the boundary and how it is expressed and

interpreted. The functional interface includes aspects of

both semantics which has to do with meanings or relationship

of meanings and syntax which is the form and order or the

way in which language elements are connected.

2.2.1 MAC-LLC INTERFACE

The information which must traverse this interface is in the

form _f data units which are to be sent out or data units

which _ve been received and require processing. This

informa_ien must be passed in data buffers along with the

control information associated with the transfer. Since

data is being passed using buffers, a further requirement is

to provide information to allow allocation and release of

these buffers. Thus, when data has been passed and

accepted, a handshake of some type is necessary to let the

sender know that the buffer has been processed and can be

released or reused. The IEEE specifications provide for the

handshake in the case of data transfers from LLC to MAC, but

not for data transfers from MAC to LLC, so the ICD has been

expanded to provide that function.

MII FINAL REPORT

ICD DESCRIPTION
Page 7

21 July 1987

The IEEE specifications provide for the handshake in the

case of MA_DATA.request but not for MA DATA.indication, so a
primitive has been added to the ICD definition to handle
this function.

2.2.1.1 LLC-MAC SERVICE PRIMITIVES

The existing specifications describes primitives and
respective parameters that are used to transfer information

across the LLC/MAC interface. For a Type 1 LLC, IEEE 802

defines three primitives: MA_DATA.request,
MA DATA.indication, and MA DATA.confirm. The ICD uses the

definitions for these primitives as given in the IEEE
specification. A fourth primitive has been added to handle
the handshaking requirement for the MA_DATA.indication which

has been called MA_DATA.indication_ack. With this

augmentation, two pairs of primitives are defined, one pair_

for each direction of data flow. _--_ _

The MA DATA.request and MA_DATA.confirm are use to transferS__
data from LLC to MAC. The MA DATA.request primitive is
generated by the LLC entity whenever a m sdu (ie MAC service

data unit) must be transferred to a peer LLC entity. Upon
receiving this primitive the MAC entity appends all MAC
specified fields including DA,SA, and any other fields that
are unique to the particular media access method in use.

The MA_DATA.confirm primitive is generated by the MAC entity
in reply to a MA DATA.request" It is used to indicate the

success or failure of the previous associated request. The
LLC sub-layer is provided with sufficient information to

associate this confirm with the appropriate request.

The MA_DATA.indication and MA_DATA.indication_ack are used
to transfer data from MAC to LLC. The MA_DATA.indication

primitive is passed from the MAC entity to the LLC entity to

indicate the arrival of a frame at the local MAC entity.

Frames_re only reported if they are validly formatted and
their _estination address matches that of the local MAC

entity:- The MA_DATA.indication_ack is a non-IEEE primitive,

necessary for proper handling of buffers,etc. The

MADATA.indication_ack primitive is generated by the LLC
entity in acknowledgement of a MA_DATA.indication. It is

used to indicate the success or failure of the previous

associated .indication. The MAC sub-layer is provided with

sufficient information to associate this primitive with the
appropriate .indication.

MII FINAL REPORT
ICD DESCRIPTION

Page 8
21 July 1987

2.2.2 MAD-SMT INTERFACE

This section concentrates on the services provided by the
Layer Management Entities (LME's) to the SMAP in order to
manage that layer. The SMAP services available to users
includes the services provided by the LMEs plus higher level
services. Access to the layer management functions is via
the Layer Management Interface (LMI), which exists between
the local systems management and the layer. The types of
services provided across the LMI for the layer are the
following:

o The ability for systems management to read and
write parameters within the layer

o The ability for systems management to cause actions
to occur within the layer.

o The ability for the layer to notify system
management of specific events which have been_
detected by the layer.

2.2.2.1 SYSTEM MANAGEMENT-LLC(SMT-LLC)
AND PARAMETERS

SERVICE PRIMITIVES

This section discusses the primitives and their respective

parameters used in Systems Management. These primitives are

passed across the LMI for the MAC sub-layer in question.
This is the more complex of the two interfaces into the MAC.

The primitives which traverse this interface are defined in

both IEEE 802.1 (System Management Spec) and IEEE 802.4.

Unfortunately, the two definitions are inconsistent. The

802.1 definition is used as it is more generally applicable

set of primitives and offers more complete functionality.

The primitives used for the MII ICD are the following:

_- LM SET_VALUE.invoke

o LM_SET_VALUE.reply

o LM_COMPARE_AND_SET_VALUE.invoke

o LM_COMPARE_AND_SET_VALUE.reply

o LM_GET VALUE.invoke

o LM_GET_VALUE.reply

MII FINAL REPORT
ICD DESCRIPTION

Page 9
21 July 1987

o SM ACTION.invoke

o LM ACTION.reply

o LM_EVENT.notify

o LM EVENT.reply

Note that these primitives are arranged as command response

pairs with the .reply as a required response for each
.invoke or .notify. The reader will notice that the

following two primitives constitute somewhat of an
exception.

LM EVENT.notify

LM EVENT.reply

For this set of primitives, the MAC initiates a

expects a .reply from the SM in response.

cases, the SM issues the command primitive and

.notify an d_

In all other_
the MAC is"

require to issue the .reply. This pair of primitives

provides the means for the Station manager to set an event

mask which allows the MAC to report events without a direct

request. The reader will also note that the LM EVENT.reply
is not defined by IEEE. As was the case with the

MA_DATA.indication, it was found that a response primitive

for the LM_EVENT.nofify was required to allow the proper
disposition of message buffers being passed across the MII.

The IEEE 802.4 primitive functions which are implemented for

the MII ICD are mapped into the IEEE 802.1 primitives as
follows:

IEEE 802.4

MA_INI_YIALIZE_PROTOCOL.request
MA_INITIALIZE_PROTOCOL.confirm

MA_SET_VALUE.request
MA_SET_VALUE.confirm

MA READ_VALUE.request
MA_READ_VALUE.confirm

MA_EVENT.indication

MA_FAULT_REPORT.indication

MA_GROUP_ADDRESS.request
MA_GROUP_ADDRESS.confirm

MA CDATA.request
MA CDATA.confirm

MA CDATA.indieation

IEEE 802.1

LM_ACTION.invoke

LM_ACTION.reply
LM_SET_VALUE.invoke

LM SET_VALUE.reply
LM GET_VALUE.invoke

LM_GET_VALUE.reply

LM_EVENT.notify

LM_EVENT.notify
LM_SET VALUE.invoke

LM SET VALUE.reply
LM ACTION.invoke

LM_ACTION.reply

LM EVENT.notify

MII FINAL REPORT
ICD DESCRIPTION

Page I0
21 July 1987

For detailed explanation of these primitives, the reader is
refered to
the ICD.

2.2.3 INTERFACE CONTROLINFORMATION

According to ISO, information transferred between entities
in adjacent layers which co-ordinates their joint operation
is known as Interface Control Information or ICI. The
application data itself is the service data unit or SDU.
The combined ICI and SDU is called an interface data unit or
IDU. The ICI must be represented in some form which is
understood by both layers. To accomplish this in a flexible
way, the ICD specifies the use of a data transfer syntax and_i_
encoding rules which are also ISO standards.

2.2.3.1 DATA TRANSFERSYNTAX

All data transferred across the MII is described using
Abstract Syntax Notation One (ASN.I) per ISO/DIS 8824. This
International Standard specifies a notation for defining a
syntax, defines a number of simple types, with their tags,
and specifies a notation for referencing these types and for
specifying values of these types. It further defines
mechanisms for contructing new types from more basic types,
a specifies a notation for defining such structured types
and assigning them tags, and for specifying values of these
types. It also defines character sets for use within ASN.I.
This notation can be applied whenever it is necessary to
define the abstract syntax of information.

Use of this standard syntax in the MII removes any logical
inference by order from the interface. Information can be
passed_in any order and its meaning is inferred by the
struct_e of the message as it is decoded. This results in
records which are perhaps more lengthy than absolutely
necessary, but offers the advantage of standardization and
extensibility in the future. For example, a record
containing an address contains information which indicates
what kind of address it is as well as the address itself in
a variable length format. A receiving entity such as the
LLC could be modified to accept an extra long address
without violating the standard or compromising compatibility
with MAC's using shorter addresses.

MII FINAL REPORT
ICD DESCRIPTION

Page II
21 July 1987

2.2.3.2]_NCODINGRULES

Although ASN.I specifies a notation for defining a syntax,
it does not specify how data is encoded. Therefore, basic
encoding rules for information transfer are supplied by
ISO/DIS 8825, Specification of Basic Encoding Rules for
ASN.I. This standard defines a set of encoding rules that
are applied to values of types defined using ASN.I which
results in transfer syntax for such values. For a detailed
definition of the transfer syntax, the reader is referred to
the MII ICD itself.

2.2.4 PROTOCOLDATA UNITS

2.2.5 DATA CHANNELARCHITECTURE

Communications across the MII boundary is accomplished withal
predefined data channels. Data is passed over these-_
channels in the form of transactions with linked lists andi_
pointers. 4
2.2.5.1 DATA CHANNEL DEFINITIONS

2.2.5.2 SYNCHRONIZATION

Each entity has a single input data channel which consists

of two globally addressable registers or memory locations.

One location is designated as a semaphore. An entity

wishing to send a message to the channel must perform a test

and set operation on the semaphore location. If the test

shows not busy, then the channel was free and the entity has
won the right to use the channel. In this case, the entity
may then write a pointer to his message in the second

register which is reserved for that purpose. The entity

receiving the message must have some way of detecting when

the pointer has been written. This may be done in a number

of wa_s depending on the system designer. One possible

choice-%s for the receiver to always write a guard word into

the pointer prior to resetting the semaphore. Another would

be for the act of writing to the pointer register to trigger

an interrupt. The method used is immaterial to the sender

as long the receiver can properly detect the occurance of
the transmission.

At initialization, the station manager must configure the
MAC to know the location of the LLC and SMs semaphore bit
and link list pointer. Likewise the SM configured the LLC

to know the location of the MAC and SMs semaphore bit and
link list pointer. Additional status locations are optional
(and useful to display self test or BITE during power up).

MII FINAL REPORT

ICD DESCRIPTION
Page 12

21 July 1987

2.2.5.3 _UFFER MANAGEMENT

In spite of their small size, maintaining memory resources

for the ICls can be difficult since so many are used so
often. The IEEE standards do not address this issue, but do

provide a reply to MA_Data.request even in a connectionless

system. The response or reply for every request is not

consistent throughout the IEEE standards and non-existent

for the MA_DATA.indioation. The lack of a response in this

case presents a difficulty in returning memory blocks back

to the system for reuse. Therefore the MII ICD requires a

reply for every request and each reply will overwrite the

memory block which carried the request. In this way, the

originator of the request receives his memory block back and

may reuse it or return it to a system free pool. This

suggests that the total amount of memory a entity requires

for ICls will not exceed the total number of outstandin_
requests it expects to post. The PDU/SDU data (which is-_

pointed to by a ICI) could work the same way (i.e. ai_

.indication is not acknowledged until the highest layer has 1
copied it) or the receiving entity could copy it and "

acknowledge it right away. Returning the block to the

originator allows for retrys without requiring that an extra

copy of the data be held for this purpose. This method is

recommended for the MII ICD so as to support both connection

and conneetionless, to support layer level resets, and ease

complications once the data gets to upper layers which block

and the records. The entities receive memory from the SM

which passes to it a linked list of free fixed size memory

segments. The SM supports alarms for low memory and

requests for more memory.

In the case of a reset to a layer, data may be lost or

corrupted which is allowed per ISO OSI specs. The default

for a layer which has been reset is to report the event to

the Station Manager. At initialization, the MAC is given a

linked_ist of memory blocks to use for incoming data (from
the media) and a linked list of initialized memory blocks

for outfacing data (to a remote station). Likewise, the SM

will need to perform the same function for the upper layers,
but this is transparent to the MII.

2.3 ELECTRICAL/PHYSICAL INTERFACE

MII FINAL REPORT
ICD DESCRIPTION

Page 13
21 July 1987

2.3.1 BUS STANDARDS

There are several acceptable backplane bus standards

available on the market today. Two of the more widely used

designs are Multibus II and VMEDus. As would be expect,
both of these designs have strong and weak points. Multibus

II has built in parity and a large card size. However, it

is a synchronous design which tends to be a speed
disadvantage in an asynchronous system, and has less
bandwidth. It also uses round robin arbitration, which

ensures a more even distribution of bandwidth among users,
but also limits the burst rate available to a single user.

The VMEDus is an asynchronous design which tends to give it

a speed advantage. It is a true multi-master bus, featuring
priority driven arbitration. The theoretical bandwidth of

40 Mbyte/sec is larger than that of the Multibus. However,?_ i
VMEDus uses a smaller card size and does not define any'_
parity lines, although extra undefined lines might be_
utilized for that purpose.

Either of these buses could be used to support the MII. The

selection of the bus standard is a system design issue which

impacts performance and design tradeoffs. For example, use

of Multibus II bus would require a larger buffer for the

media (100 Mbit/sec) because of its relatively low
bandwidth. On the other hand, use of Multibus II would

prevent the MAC from monopolizing bus bandwidth because of
its round robin arbitration scheme.

In order to provide a complete MII a electrical interface

must be established. To support further discussion, the
VMEbus has been selected as a baseline for the ICD.

However, it should be noted that either candidate could be

selected. In addition, as little reliance on VME

characteristics as possible has been incorporated into the
ICD in_rder to facilitate adoption of another bus standard
at a la_er date.

2.3.2 IMPLEMENTATION OPTIONS

2.3.2.1 PHYSICAL PARTITIONING OF FUNCTIONS

The MII boundary is artificially based on IEEE 802

specifications and the definitions of the primitives.

However, the selection of a physical boundary between
functions is more of a systems issue than an MII

requirement. The decision on where to physically locate

functions has great impact on the power, weight, size, and

speed factors of the implementation. The ICD does not

MII FINAL REPORT
ICD DESCRIPTION

Page 14
21 July 1987

dictate _he physical partitioning of functions, but leaves

these performance related decisions up to the system
designer. It is possible for MAC functions to reside

totally in a separate physical module or modules than the

upper layers, but this is not a requirement. In the case of

total physical separation at the MII boundary, the MAC would

send ASN messages over the VME bus. Alternatively, messages

sent over VME could be proprietary as long as another module
could convert them to ASN and retransmit them over the VME

to himself. In this way, it is possible to make tradeoffs

between hardware complexity and performance all within the

confines of the ICD specifications. However, it should be

noted that the MII separation does introduce some
inefficiencies that are unavoidable.

2.3.2.2 SIMPLE BIU OPTION

The simplest implementation option is to use a singl_-

general purpose processor. This option offers the lowest_
cost at the expense of performance. The majority of the MAC_

would be implemented using micro-controller technology in
order to achieve the speeds necessary for handling the lower

level functions. The upper layers, including the LLC would

be implemented with software running on the general purpose

processor. In order to achieve a minimal hardware

implementation, the higher level MAC functions of

interfacing to the SM and the LLC could actually be handled

with software on the same processor which runs the upper
layers. This is the approach that was actually used on the

demonstration system. In order to conform with the MII ICD,
communications across the MII would be handled over the VME

bus, even though the elements communicating are running on

the same processor. In order to achieve plug compatibility,

the MAC software could be contained in a separate physical

ROM which would plug into the processor card.
Communications between the lower level MAC functions and the

upper _layer MAC functions would be handled over the VME bus

as wel_, but would be permitted to use a much simpler

language -than required for the MII. This implementation

option is illustrated in Figure 3.

2.3.2.3 MEDIUM SPEED BIU OPTION

This option offers a compromise between cost and

performance. Multiple general purpose processors are used

to implement different layers, but all communications takes

place over a single VME bus. This option is illustrated in

Figure 4. All MAC functions are physically located on a

module physically separate from upper layers. Again, lower

level MAC functions would be implemented with high-speed

LAN
_1--1/F

:jJl _

MAC
LOWER

LEVELS

LOCAL

BUFFERS

MAC
S/W

I REGISTERS I

COM_

MEMORY

!

LLC, etc.

I REGISTERS I

_,ME BUS

Fig. 3 SIMPLE BIU IMPLEMENATION

Mll

LAN

'1 Ii_

MAC PROCESSOR

MAC

LOWER

LEVELS

MAC
S/W

I REGISTERS I

CPU

CCtvlMON

MEMORY

VME BUS

UPPER

LAYER

PROCESSOR

I REGISTERS I

Fig. 4 MEDIUM PERFORMANCE BIU

MII FINAL REPORT

ICD DESCRIPTION
Page 17

21 July 1987

micro-controller technology. Upper level MAC functions run

on their own general purpose processor. However, maximum

performance would not be achieved with this design because
all data transfers from the LAN interface to the common

memory would be performed on the VME bus, tying up
considerable bus bandwidth and limiting maximum transfer
speeds.

2.3.2.4 HIGH SPEED BIU OPTION

The highest speed operation would be obtained with this

option. As with the medium performance option, multiple

general purpose processors are used to implement different
layers. However, this option would use a VMX bus for
high-speed data transfers from the LAN interface to common

memory. This design frees the VME bus for other activity,

resulting in excellent performance. This option is_a
illustrated in Figure 5. l3 DEMONSTRATION SYSTEM

This section describes the demonstration

built in support of the MII development.
system which was
The demonstration

provided a testbed and proving ground for concepts and ideas
being incorporated into the ICD.

3.1 DEMONSTRATION GOALS

3.2 SYSTEM DESCRIPTION

The demonstration system was based on existing BIU hardware.
which was developed under the FODS and NOS contracts.

Although this hardware was not designed with the MII

requirements in mind, it was adequate to provide the

hardware platform for the proof-of-concept work that was

required by the ICD project. The BIU consists primarily of

an optical interface, a 68000 series processor with DMA, and

RS-232 _ type interfaces. It also includes a high speed
parallel -interface which was not used for the MII

demonstration. New software was written for the BIU

processor which tested and demonstrated the MII concepts and
designs.

Since a primary goal of the MII is to allow different MAC

protocols to interface to a common LLC design, two different

MAC implementations were developed for the demonstration.
Both MAC's used the same hardware, but different software

was used to implement a Star*Bus protocol and a token

passing bus protocol. Since both implementations were

interfaced to the same upper layer design, a much stronger

LAN

I/F

MII

'i III ;

I

MAC PROCESSOR

MAC

S/W

I REGISTERS I

MAC

LOWER

LEVELS

COMMON

MEMORY

LLC & UPPER

LAYER

PROCESSOR(S)

I REGISTERS I

SM
PROCESSOR

I REGISTERS I

VME BUS

Fig. 5 HIGH PERFORMANCE BIU

MII FINAL REPORT

DEMONSTRATION SYSTEM
Page 19

21 July 1987

demonstrgtion of the MII design resulted.

3.3 INTERFACE IMPLEMENTATION

3.3.1 PRIMITIVES

3.3.2 BUFFER MANAGEMENT

A key element of a communication design is the handling of

buffers. The demonstration utilized two basic buffer types

for different purposes. Buffers for the data packets

themselves (SDU/PDU) were pre-allocated during system

initialization. These buffers are of a fixed size large

enough to accomodate the maximum size data packet that the
bus hardware can handle. These buffers are linked into a

free list. Whenever either the MAC or LLC needs a data

buffer, it is obtained from this list by a common system_] L

service routine. When the buffer is no longer needed, it is-._

returned to the free list, again by a call to a system i_
defined service routine. The buffer includes in its header_

a pointer and byte count which defines the location of .the

actual data within the buffer. The header also includes a

link which is used to point to the next free buffer in the
free list.

Numerous other small buffers are used in the system for
passing ICI across the interface. These buffers are

obtained via a service call to the memory allocate routine.

Generally, only enough memory is allocated to hold the

expected message. When these buffers are no longer needed,

they are returned to the free memory pool via a system call.

In the demonstration system, these service calls are part of
the interface definition. To avoid unnecessary dependencies
on operating system implementation, we propose that the task
of buffer management and memory allocation be handled by the
statio_ manager via standard primitives defined for that
purpose-. These primitives are defined in the final MII ICD.

3.3.3 OPERATING SYSTEM

The major thrust of the MII ICD project was to demonstrate

the separability of the LLC and MAC functions. While the

use of separate physical processors for these functions may

be necessary to achieve high rates of throughput, it is

possible to demonstrate the separability of function
required for the MII demonstration with other means. The

use of separate software tasks running under a real-time
multi-tasking operating system effectively accomplishes the
same thing with less hardware. The purpose of a

MII FINAL REPORT

DEMONSTRATION SYSTEM
Page 20

21 July 1987

multi-tas_ing OS is to allow many independent tasks to run

concurrently on one processor. Effectively, the OS

transforms one physical processor into multiple logical

processors. The technology for doing this is well developed

and widely known. This technique was employed for the MII

demonstration to show the separation of media dependent and
media independent functions.

The operating system services play an important role in the

demonstration system. Operating system calls are used to

allocate and deallocate memory for the various buffers. In

addition, the interprocess communications provisions of the

OS are used for communications across the MII. These

functions are provided by calls to the signal and wait

system service routines. In the final ICD, these

communications are replaced by the use of the semaphore and

pointer locations defined for each entity. These transfers_

are expected to occur over the VME bus. The rigorous use of(!_
OS services for this function provides the same level ofii_

separation as is provided in the final ICD. 4
3.3.4 ASN.1 SYNTAX

The demonstration system used ASN.I syntax and encoding

rules for data transfers across the MII as described in

Section 2. The resultant transfer language is given in the

SOFTWARE USER MANUAL in Appendix B.

3.4 DEMONSTRATION SYSTEM DETAILED DESCRIPTION

3.4.1 COMPONENT IMPLEMENTATION

3.4.1.1 TOKEN MAC

The design of the Token Bus MAC was purposely kept very

simple for this demonstration. Since it is implemented with

software to run on the Star*Bus hardware, performance is

inherem_ly limited and no attempt was made to optimize the

design5 The operation of the Token Bus MAC is very loosely

patterned after IEEE 802.3, but many of the advanced

features that would normally be designed into firmware were

not incorporated. Priority service and ring entry and exit

algorithms are not provided. Token recovery is performed

via a simple watchdog timer that detects when the token has

apparently been lost. Initialization of the token is

performed by a manually activated system management command.

Unsuccessful attempts to pass the token are detected using

the acknowledge supplied by the FODS hardware and retrys are

attempted in this case. The Token Bus MAC acknowledges the

existence and manipulates the variables in the list below,

MII FINAL REPORT
DEMONSTRATIONSYSTEM

Page 21

21 July 1987

although-not all of them have

demonstration system.

any real function in the

VARIABLE NAME

TS x

NS x

SLOT_TIME x

HI_PRI_TOKEN_HOLD_TIME x

MAX_AC 4 ROTATION_TIME x

MAX_AC 2 ROTATION_TIME x

MAX_AC 0 ROTATION TIME x

MAC_RING_MAINTENANCEROTATIONTIME x

RING_MAINTENANCE_TIMER_INITIAL_VALUE x x x

MAX_INTERSOLICIT_COUNT x x x

MIN_POST_SILENCE_PREAMBLELENGTH x x x

EVENT_ENABLE MASK x x x

MAX RETRY_LIMIT x x x

MA_GROUP_ADDRESS x x x

CHANNEL ASSIGNMENTS x x x

TRANSMITTED POWER_LEVEL_ADJUSTMENT x x x

TRANSMITTED_OUTPUT_INHIBITS x x x

RECEIVED_SIGNAL_SOURCES x x x

SIGNALING_MODE x x x

RECEIVED SIGNAL_LEVEL_REPORTING x x x

LAN_TOPOLOGY_TYPE x x x

MACTYPE x x

Read Write Real Emulated

x x

x x

x x

x x

x x

x x

x x

x x

Variable list, token MAC

3.4.1.1.1 MAC PROCESS

The Token MAC process basically builds and maintains queues

of commands and data packets. It processes requests and

commands received from the LLC and station manager and

builds_a queue of data packets for the interrupt servicer to

transmft.- SM commands are processed by taking appropriate

actions and/or building response primitives and sending them

back. This process also receives packets from the interrupt

service routines and queues them to the LLC.

3.4.1.1.2 INTERRUPT SERVICERS

The interrupt servicers are those routines which deal

directly with the hardware. These routines manage the token

and perform DMA transfers of data packets from data buffers
to the transmitter and from the receiver decoder to data

buffers. Data buffers are passed to and from the MAC

MII FINAL REPORT
DEMONSTRATIONSYSTEM

Page 22
21 July 1987

process "via special queues. Also, these routines collect

statistic relating to the passing of tokens.

3.4.1.2 STAR*BUS MAC

The Star*Bus MAC uses a proprietary bus protocol developed

for space applications under another project. Most of the

protocol is handled in specially designed micro-coded

hardware, so that services performed by the software are

minimal. The Star*Bus MAC recognizes different variables
than the Token MAC, which are listed below.

VARIABLE NAME Read Write Real Emulated

MACTYPE x x

TS x x x

SLOT_TIME x x x

INTER FRAME GAP x x x

ATTEMPT_LIMIT x x x]._

BACK OFF LIMIT x x x

JAM_SIZE x x x

MAX FRAME_SIZE x x x

MIN_FRAME SIZE x x x

ADDRESS SIZE x x x

EVENT ENABLE MASK x x x

MA GROUP_ADDRESS x x x

MA_GROUP_ADDRESSALL

Variable list, STAR MAC

3.4.1.2.1 MAC PROCESS

The Star*Bus MAC process performs basically the same

functions as the Token MAC. However, the Star*Bus MAC must

initiate the first transmission after the transmit queue has

been allowed to empty since there is no token being passed

to cause data transmissions to begin. Also, the Star*Bus

MAC recognizes and processes variables which have meaning to

its own protocol

3.4.1.2.2 INTERRUPT SERVICERS

The Star*Bus MAC interrupt servicers perform basically the

same functions as those of the Token MAC. However, there is

no token to manage which is the major difference.

MII FINAL REPORT

DEMONSTRATION SYSTEM
Page 23

21 July 1987

3.4.1.3 -LLC

As discussed in a previous section, development of a fully

functional LLC was found unnecessary to adequately

demonstrate the MII design. Therefore, the demonstration

LLC component includes only the basic functions of sending

and receiving packets. The special LLC test functions were

not required for the demonstration. Basically, the LLC must

deal with only the four primitives defined for the MAC-LLC
interface. This section of software also included test

functions of packet generation and analysis.

3.4.1.3.1 SEND

This process is responsible for handling all data packets to
be transmitted by the MAC, whether they are generated

internally or entered from the console. Packets may be_

generated in a number of ways and from various sources which-l_
are described in more detail in the Operators Manual in the!_
appendix. For _each packet sent, this process builds a_

request primitive and passes it to the MAC. It also handles

the reply primitive which is passed back as a result of each

request and disposes of the associated data buffer as is

appropriate. This process also keeps statistics on the

number of packets which have been originated and
successfully sent to the MAC for transmission.

3.4.1.3.2 RECEIVE

The receive process collects and disposes of packets
received from other stations. It accepts MA_DATA.indication

primitives from the MAC and generates MA_DATA.indication_ack

for each one received, thus returning the data buffer to the
sender(MAC). It also collects statistics on received

packets.

3.4.1.4 STATION MANAGEMENT

A formaq station manager was outside of the requirements for
the ICD program and therefore was not include in the

demonstration. In essence, the test operator performs the
function of station manager in the demonstration system.

This portion of the system provides the operator with a
control and test interface into each BIU via an RS-232

interface. The software translates operator input commands

into the appropriate SM primitives to perform the desired

actions. Statistics information gathered throughout the

system are also collected and displayed per operator
commands.

MII FINAL REPORT
DEMONSTRATIONSYSTEM

Page 24
21 July 1987

3.4.1.4.1 COMMAND INTERPRETER

This process performs all work associated with handling

input from the operator. This includes bufferin_ of command

lines, editin_ functions, parsing of the command into

keywords and associated parameters, and calling of

appropriate handlers to perform or initiate requested

functions. The command interpreter accepts user input

commands, translates them into SM primitives which are sent

to the MAC. It also accepts test commands and activates the

requested test functions, for example the sending of packets

or activation of a display mode.

3.4.1.4.2 DISPLAY

This process provides display of packet contents on the CRT.

It is required because the operating system provides only.__
blocking I/O which stops the process requesting the I/O._

until the request has been satisfied. Therefore, this_

process is used to perform the display function so that_
other processes may continue to execute while the output
proceeds.

3.4.1.4.3 STATISTICS

This process drives the real time statistics display for the

system when activated. It also serves as a collection point
for SM events reported by the MAC process. The statistics

display is updated periodically per a system alarm timer.

3.5 DEMONSTRATION TESTING

The Test Set Up which was used to perform the ICD MII

demonstration consists of 3 BIU's communicating over a fiber
optic link (Star*Bus). Each of the BIU's interfaces to a

CRT terminal via an RS-232. The terminal provides the

operator with test, control, and station management
functions for the interfacing BIU. A block diagram of the

test setup is shown in Figure 6.

(_CRT

_ RS-232 -_

(_CRT

RS-232

BIU BIU

Fiber Optic Bus

BIU

FIG. 6 DEMONSTRATION SETUP

Appendix A

Operator's Manual

MS 2-2-5250

SPERRY SPACE SYSTEMS
P.O. BOX 52199

PHOENIX, ARIZONA
85072-2199

OPERATOR'S MANUAL Page 1
20 July 1987

User Condole Commands

The following are valid commands which the operator may
enter from the console and which result in the described

activity or functions. Lists of valid variables which may
be manipulated for the two MAC's are found in the Token

Bus/Star*Bus Medium Access Control Software User Manual.

SET varname - examine variable and allow change

DIS_VAR varname - display value of single variable

TEST varnamel,test,varname2,oonst - perform comparison test
specified between two variables and set the first variable

equal to a constant if the test is satisfied. The parameter
"test" may take on the following values:

< - test for varnamel less than varname2

> - test for varnamel greater than varname2

- test for varnamel equal to varname2

<> - test for varnamel not equal to varname2

<= - test for varnamel less than or equal to
varname2

7= - test for varnamel greater than or equal to
varname2

The comparison is an atomic test performed using the compare
and set Station Management primitive. No action other than

display of an error message will be taken if either variable

is not a valid MAC variable. However, type-checking will

only be performed by the MAC when the primitive is
processed.

CTEST _arnamel,test,constant - perform comparison test
specified between a variable and a constant and set the

variable equal to the constant if the test is satisfied.

The parameter "test" may take on the following values:

< - test for varnamel less than constant

> - test for varnamel greater than constant

= - test for varnamel equal to constant

Appendix B

Appendix B

OPERATOR'SMANUAL Page 2
20 July 1987

<> _- test for varnamel not equal to constant

<= - test for varnamel less than or equal to
constant

,= - test for varnamel greater than or equal to
constant

The comparison is an atomic test performed using the compare
and set Station Management primitive. No action other than

display of an error message will be taken if the variable is

not a valid MAC variable. However, type-checking of the
variable and constant will only be performed by the MAC when

the primitive is processed.

DIS_MAC - display all MAC variables

SENDS [address][,pattern] - send single packets to station .I_/

address starting with pattern as random seed for packet

generator. Once entered, the routine accepts:

s - send next packet, rotating pattern

r - resend last packet

x - quit

c - send console defined packet

Both parameters are optional and will default to previously
used address and pattern.

SENDC [t][,][p][,][address list] - send packets continuously

t = time between packets

p = (r)otating or (f)ixed pattern or (e)onsole

entered packet or fixed (q)ueue of rotating
packets.

address list = list of up to 16 destination

addresses separated by commas.

KILL SEND - cancel the continuous sending of packets
previously activated via the SENDC command.

KILL_STATS - cancel the display of real-time statistics.

OPERATOR'S MANUAL Page 3
20 July 1987

CONSOLE [addr] - accept and send ASCII text from the console
and display received packets on console in ASCII

DEF PACKET - enter a packet from the keyboard in HEX for
subsequent transmission by another command.

DIS_STATS - display static statistics

RESET - re-initialize variables in this station

DIS_RT - display realtime statistics in the realtime window.

FREEZE - freeze MAC activity

UNFREEZE - resume normal MAC activity

ENTER_RING - activate the ring by passing a token frame to
the next station. This command will also activate the ._

watchdog token timer so that this station will generate a
new token if it is dropped.

EXIT RING - consume the token by refusing to pass the next

token received and deactivate the watchdog token timer.

DIS_GA - display group address table

GRP_ADDR [-]addr - modify group address table by adding or
deleting the specified address. The minus sign causes the

address to be deleted from the table if it already exists.

If table is full or address is already defined or attempt is
made to delete address not previously defined, then an

appropriate error message is displayed.

CLR GA - clear the entire group address table.

CLR STATS - clear all statistical counters.

DIS PACKET x - display packet in HEX format on the CRT.
Parame_er-x may take on values of:

r = last received packet

s = last sent packet

TOKENBUS / STAR BUS

MEDIUM ACCESS CONTROL

SOFTWARE USERS MANUAL

MS 2-2-5250
SPERRY SPACE SYSTEMS

P.O. BOX 52199
PHOENIX, ARIZONA

85072-2199

Page ii

20 July 1987

CONTENTS

1

2

2.1

3

4

4.1

4.1.1

4.1 .2

4.2

4.2

4.22

4.23

4.24

4.25

4.26

4.27

PURPOSE 2

SCOPE 2

GENERAL 2

ARCHITECTURE 3

INTERFACES 4

LLC 4

COMMANDS 4

SYNTAX 5

STATION MANAGER COMMANDS 12

COMMANDS 12

IEEE 802.3 COMMAND DESCRIPTIONS 13

SYNTAX 25

FORMAL SYNTAX SPECIFICATION 25

]EEE 802.4 SM COMMAND DESCRIPTIONS 33

SYNTAX 48

FORMAL SYNTAX SPECIFICATION 48

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT Page 1
20 July 1987

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT
PURPOSE

Page 2
20 July 1987

I PURPOSE "

The purpose of this document is to give interface

descriptions for implementation of the Media Access

Controller (MAC) and software which is to interface to it.

2 SCOPE

This document contains general descriptions of interface

syntax, commands and variables and responses the mac will
have to those commands and variables.

2.1 GENERAL

Each section of this document contains a subsection which '_

describes with text the general theory of operation for its
respective component.

For additional information see the ISO DIS 8824 document

Specification of Abstract Syntax Notation One (ASN. I).

TOKEN/STAR BUS MAC SOFTWAREUSERSDOCUMENT
ARCHITECTURE

Page 3
20 July 1987

3 ARCHITECTURE

The Media Access Controller (MAC) is the device which

manages the actual transfer of data on a local area network

(LAN). It interfaces to the physical layer (i.e. the

hardware) and manages it in such a way as to provide a means

by which it can share the communication resources the

hardware provides.

The MAC task has two interfaces to the outside world; the

Logical Link Control (LLC), and the Station Manager (SM).

The LLC is the source and sink of data to the MAC. It

requests the MAC to perform a service of shipping data to an
address. In addition the MAC will indicate to the LLC when

another remote LLC has passed data to it.

The instructions to the MAC are queued by the LLC and a

message is sent to the MAC so it will be awakened by the OS.

The MAC de-queues it and puts it into a message queue for

the MACs interrupt routine. The interrupt routines take it

from there. The MAC can get a message from the interrupt

routines which indicate to the MAC that data has arrived

from another remote MAC. The MAC queues a message to the

LLC to awaken it and indicate that a message has arrived and
where it is.

The Station Manager interfaces in the same way as the LLC

but its primitives are move extensive. It has the ability

to set variables in the MAC, read its status, reset it, and

perform all the necessary functions to manage the media.

For each request passed to the MAC from the LLC or SM there

is a confirm. When the MAC initiates a request, event, or

indication, it expects a confirm. These confirms allow the

requestors to deallocate the original message.

Each sect-ion gives further details on the method by which

the MAC commands operate.

TOKEN/STAR BUS MAC SOFTWAREUSERSDOCUMENT
INTERFACES

Page 4

20 July 1987

4 INTERFACES

4.1 LLC

4.1.1 COMMANDS -

The LLC Interface supports MA DATA request and confirms and

MA_DATA indication and indi_aoks. Details of these commands

are described in the IEEE 802.3, IEEE 802.4 and IEEE 802.2

documents. A brief explanation follows;

MA_DATA.REQUEST

{ DESTINATION_ADDRESS, M_SDU, DESIRED_QUALITY }

This command comes from the LLC to the MAC and represents a

request to ship the data pointed to by the M SDU to the __.lm

station at address DESTINATION ADDRESS using a level of ?_

quality of DESIRED_QUALITY. The MAC is expected to respond
with the following command;

MA DATA.CONFIRMATION

{ QUALITY, STATUS }

This command from the MAC to the LLC will indicate to the

LLC that the data previously requested to be shipped has
been sent. The LLC knows what data was sent because the

MA_DATA.CONFIRMATION message is returned to the LLC by

overwriting the original MA DATA.REQUEST message.

MA_DATA.INDICATION

I DESTINATION_ADDRESS, SOURCE_ADDRESS,

M_SDU, QUALITY

This command from the MAC to the LLC will indicate to the

LLC tha_ data located at pointer M_SDU from the station

SOURCE ADDRESS was sent to DESTINATION ADDRESS (needed to

identify -when a group address is used) with a QUALITY of

service. The MAC expects the LLC to overwrite the

MA_DATA.INDICATION with the MA_DATA.INDI_ACK thus allowing

it to release the message buffer.

MA_DATA.INDI_ACK

I STATUS }

This command from the LLC to the MAC will indicate to the

MAC that the LLC has no more use for the indicate message
buffer.

TOKEN/STAR BUS MAC SOFTWAREUSERSDOCUMENT
INTERFACES

Page 5
20 July 1987

4. I. 2 SYNTI_X -

The LLC communicates to the MAC across the MII. The syntax

of such communication is described in the Software Design

Document according to Abstract Syntax Notation One or ASN. I

(ISO DIS 8826). The information described is encoded to the

basic coding rules as found in ASN.I (ISO DIS 8825). Some

sample records follow the syntax notations in the station

management interface section.

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

]NTERFACES

Page 6

20 July 1987

MESSAGE_RECORD :;= [PRIVATE e] CHOICE

MA_Data_request [0] me_request_type I

MA_Data_confirm [I] me_confirm type J

MA_Data_indicate [2] ma_indicate-type J

MA_lndi_ack [3] ma_indi_ack_type

ma_request_type ::= SET

destination_address [0] net_address_type

M_SDU [1] M_SDU_type

requested_Ser_class [2] req_ser_type

frame_control [3] frame_con type

stream [4] stream_type

link_list [5] link list_type

token_class

(optional)

(optional)

(optional)

[6] token class_type (optional)

-- Multiple request_info's ere allowed for FDD] only

-- token_class allowed for FDD[only and has o defou

me_indicate-type ::= SET

destination_address [0] net_address_type

source_address [1] net address_type

M_SDU [2] M_SDU_type

reception_status [3] rec_status (optional)

requested_Set_class [¢] req_ser_type (optional)

frame_control [5] frame_con_type (optional

-- The optiona parameters have o default value,

t .

me_confirm_type :=

transmit_status

provided_ser_class

number_of_sdu_links

ma_indi_ec__type ::= SET

[0] tran_status

[1] provided_ser_type (opt

[2] number_of_sdu (optiona

anal),

)

indi_stotus [0] integer -- 1 = good O= not accepted

net_address_type ::= CHOICE

net_odd VALUE_]NTEGER_I

M_SDU_type ::= SET

SDU_PTR [0] ADDRESS,

SDU_SIZE [1] INTEGER,

buff_num [2] INTEGER

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT Page7
INTERFACES 20July 1987

req_ser_type"::= SET
priority [0]
response [1]
quality_of_ser [2]

INTEGER,(optional)
INTEGER,(optional) -- ack= 1
INTEGER_ (optional)

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page8
20July 1987

provided_ser_type::= SET
priority [0] INTEGER,(optional)
response [I] INTEGER, (optional) -- ack = I

quality_of_ser [2] INTEGER (optional)

indi_ack_type ::= SET

indi_ock_stotus ock_status I

frame_con_type ::= SET _ --TBD

link list_type ::= SET _ --TBD

stream_type ::= SET {} --TBD

token_class_type ::= SET t_ --TBD

rec_stotus ::= CHOICE

stotus [e] INTEGER -- 1 = good

tron_status ::= CHOICE

status [0] INTEGER -- 1 = good

number_of_sdu ::= CHOICE {_ --TBD

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES Page9

2eJuly 1987

WHATFOLLOWSISWHATIS ACTUALLYUSEDOUTOFTHEABOVE
FORA REQUEST(TOA 8e2.3MAC):

MESSAGE_RECORD::= [PRIVATE0] CHOICE
_MA_Dato_request[0]

_destinotion_oddress[0]
net_oddVALUE_INTEGER_I

M_SOU [1]
_SDU_PTR [0] ADDRESS,

requested Ser_class [2]

_priority [0]

response [1]

t

Typical confirm of a previous response.

-- IROB

INTEGER, (optional) -- prior ty

INTEGER, (optional) -- ack = 1

MESSAGE_RECORD ::= [PRIVATE O]

t MA_Doto_confirm [1]

ltronsmit_stotus [0]

_status [0] INTEGER -- 1 = good

I
provided_set_class [1]

tpriority [0] INTEGER, --priority

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page 10

28 July 1987

A typical indicate message from the MAC to the LLC.

MESSAGE_RECORD ::= [PRIVATE g]

MA_Dato_indicate [2]

destination_address [g]

net_add VALUE_INTEGER_I

source_address [1]

net_add VALUE INTEGER_I

M_SDU [2]

SDU PTR [0] ADDRESS --]ROB prt

!
reception_status [3]

status [0] INTEGER -- 1 = good

!
requested_Ser_closs [4]

i priority [0] INTEGER, -- priority

MESSAGE_RECORD ::= [PRIVATE 0] CHOICE

MA_Indi_ack [3]

indi_status [0] integer -- 1 = ok 0= !ok,

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT Page11
INTERFACES 20July 1987

ENCODING:

e0 lc MESSAGERECORD
00 la MA_Data_request

e0 06
ce02 xx xx net_addINTEGER

el 06
c004 xx xx xx xx SDU_PTRADDRESS

e208
e002 xx xx priority INTEGER
cl 02 xx xx responseINTEGER

e00e MESSAGERECORD
el 0c MA_Data_confirm

e004
cO02xx xx status INTEGER

e004
cO02 xx xx priority INTEGER

e022 MESSAGE_RECORD
0220 MA_Dotoindicate

e004 destination
c0 02 xx xx net_add INTEGER

el 04 source
c0 02 xx xx net_odd INTEGER

e206
c0 04xx xx xx xx SDU_PTRADDRESS

e3 04

ce 02 xx xx status INTEGER

04 04

c0 02 xx xx priority INTEGER

e0 08 -- MESSAGE_RECORD

03 06 .T MA_Indi_ock

c0 02 xx xx indi_stotus INTEGER

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT
INTERFACES

Page 12
20 July 1987

4.2 STATION MANAGER COMMANDS

4.2.1 COMMANDS -

The Station manager sends invoke commands to the MAC and the

MAC responds with a reply response. The pairs which follow

are first station manager command followed by the MAC
response.

SM_MAC_LM_SET_VALUE.INVOKE

SM_MAC LM_SET VALUE.REPLY

SM_MAC_LM GET VALUE.INVOKE

SM_MAC_LMGET_VALUE.REPLY

SM_MAC_LM_COMPARE AND_SET VALUE.INVOKE

SM_MAC_LM_COMPARE AND SET_VALUE.REPLY

SM_MAC ACTION VALUE.INVOKE i_ _

SM_MAC ACTION VALUE.REPLY

The Station manager can set an event mask which allows th

MAC to report events without a direct request. The MAC
initiates a NOTIFY and expects a REPLY from the LLC in
response.

SM_MAC_EVENT VALUE.NOTIFY

SM_MAC_EVENT_VALUE.REPLY

2

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT
INTERFACES

Page 13

20 July 1987

4.2.2 IEEE-802.3 COMMAND DESCRIPTIONS -

SM_MAC_LM SET VALUE.INVOKE

I PARAMETER TYPE, ACCESS CONTROL_INFO }

The objective of the SM MAC_LM SET VALUE.INVOKE command by

the SM is to set a value in the MAC as defined by the

parameter type structure. This structure specifies both the
variable to be set and the value to which it is set.

SM MAC_LM_SET_VALUE.REPLY

I STATUS }

The objective of the reply by the MAC to the SM is to_
indicate the success or failure of a previousM

SM_MACLM_SET_VALUE.INVOKE. The SM expects the MAC to_

overwrite the SM MAC_LM SET VALUE.INVOKE with the_
SM_MAC_LM_SET_VALUE.REPLY thus allowing the SM to release

the message buffer.

SM MAC_LM GET_VALUE.INVOKE

{ PARAMETER_TYPE, ACCESS_CONTROL_INFO }

The objective of the SM_MAC LM_GET VALUE.INVOKE command by

the SM is to get a value in the MAC as defined by the

parameter type structure. This structure specifies the
variable to be read.

SM_MAC LM_GET VALUE.REPLY

{ PARAMETER TYPE, STATUS }

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous

SM_MAC_LM_GET_VALUE.INVOKE. The SM expects the MAC to

overwrite the SM MAC_LM GET_VALUE.INVOKE with the

SM MAC_LM GET_VALUE.REPLY thus allowing the SM to release

the message buffer.

SM_MAC_LM_COMPARE_ANDSET_VALUE.INVOKE

{ PARAMETER TYPE, OPERATION COMMAND,

ACCESS_CONTROL_INFO }

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT
INTERFACES

Page 14
20 July 1987

The Compare and Set value command forces the MAC to do a

comparison (of either a given constant or of a MAC variable)

against a MAC variable. If the comparison is true then the
MAC variable is over written. The PARAMETER_TYPE indicates

the parameter to be over written and the value to use. The

OPERATIONCOMMAND structure specifies the comparison to do,

and the constant or MAC variable to use in the comparison.

SM_MAC_LM COMPARE AND SET_VALUE.REPLY
{ STATUS, RETURN_VAL I

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous
SM_MAC LM COMPARE AND_SET VALUE.INVOKE The SM expects the
MAC to overwrite the SM_MAC_LM COMPARE AND SET VALUE.INVOKE

with the SM MAC LM COMPARE AND SET VALUE.REPLY thus allowing
the SM to release the message buffer.

SM_MAC_ACTIONVALUE.INVOKE

I PARAMETER_ID, ACCESS_CONTROL INFO }

The objective of the SM MAC_ACTION_VALUE.INVOKE command by
the SM is to force a MAC operation (i.e. reset, freeze) in

the MAC as defined by the parameter_ID structure. This

structure specifies the action to be performed.

SM_MAC ACTION VALUE.REPLY

STATUS, ACTION REPORT }

The objective of the reply by the MAC to
indicate the success or failure of

SM_MAC_ACTIONVALUE.INVOKE The SM expects
overwrite the SM_MACACTIONVALUE.INVOKE

SM MAC__ACTION_VALUE.REPLY thus allowing the SM
the message buffer.

the SM is to

a previous
the MAC to

with the

to release

MAC_SM EVENT_VALUE.NOTIFY

I EVENT ID }

The objective of the MAC_SM EVENT_VALUE.NOTIFY command by
the MAC is to report a event which has occurred in the MAC

as defined by the EVENT_ID structure. This structure

specifies the Event and an integer. These events can be
masked by setting the EVENTMASK variable.

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT
INTERFACES Page 15

20 July 1987

MAC-SM_EVENT VALUE.REPLY
! STATUS }

The objective of the following reply by the SM to the MAC is

to indicate the success or failure of a previous

MAC-SM_EVENTVALUE.NOTIFY. The MAC expects the SM to

overwrite the MAC-SM_EVENT VALUE.NOTIFY with the

MAC_SM_EVENT VALUE.REPLY thus allowing the MAC to releasethe message buffer.

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

[NT ER FAC ES
Poge 17

20 July 1987

READ_WRITE_VALUE_TYPES ::= CHOICE {

[e] MAC_TYPE

[1] TS

[2] SLOT_TIME

[3] INTER_FRAME_GAP

[4] ATTEMPT_LIMIT

[5] BACK_OFF_LIMIT

[6] JAM_SIZE

[7] MAX_FRAME_SIZE

[8] MIN_FRAME_SIZE

[9] ADDRESS_SIZE

[10] EVENT_ENABLE_MASK

[11] MA_GROUP_ABDRESS

[12] MA_GROUP_ADDRESS_ALL

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT Page 18

INTERFACES 2e July 1987

TS ::= VALUE_ADDRESS_I

This variable represents the address of this station. Since

FODS has its address set in hardware this variable has no

effect on MAC performance.

SLOT TIME ::= VALUE_]NTEGER_I

This variable represents the slot time of this station. This

is the maximum time this station must wait on another

station to respond to a transmition. The FODS knows this as

T Gap. Since FODS has T_Gap set in hardware this variable

has no effect on MAC performance.

EVENT_ENABLE_MASK ::= EVENT_ENABLE_BITS

EVENT_ENABLE_BITS ::= BIT STRING

DUPLICATE_ADDRESS (2),

FAULTY_TRANSMITTER (3),

XMIT_QUEUE THRESHOLD_EXCEEDED (4),

RECEIVE_QUEUE_THRESHOLD_EXCEEDED (5),

WATCH_DOG_TIMEOUT (6),

FROZEN (7),

MAX_RETRY_ENCOUNTERED (10),

BADMESSAGE_SENT (11)

-- Where I is enabled

The MAC will report events when discovered and the

appropriate bit is set in the MASK above. These bits are

inspected each time the event has occurred and the MAC task

is active. The event is reported only once whenever the

actual occurence is detected.

ATTEMPT_L.II_IT ::= VALUE_INTEGER_I

This is the maximum number of times that a packet will be

retransmitted when the acknowledgement indicates a bad

transmittion. Since this is a connectionless system this

variable will not be used.

MA_GROUP_ADDRESS ::= VALUE_ADDRESS_I

The MAC con respond to a group of group addresses. This is

one of two methods for the Station Manager to tell the MAC

which addresses are acceptable. This implementation will

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT Page 19

INTERFACES 20 July 1987

support a totel of 16 group addresses. A positive value in

this command will set this address as part of the group

addresses (unless there all used up) and a negative address

will delete this address from the table.

MA_GROUP_ADDRESS_ALL ::= VALUE_ADDRESS_16

The MAC can respond to a group of group addresses. This is

one of two methods for the Station Manager to tell the MAC

which addresses are acceptable. This implementation will

support a total of 16 group addresses. This command will

write or read all 16 addresses at once. Addresses which are

not valid addresses should be set to a negative one.

Therefore only positive addresses will be passed in with

this command unless there a negative one (a null address).

FREEZE MAC ::= VALUE INTEGER_I

This variable when set to one will freeze the MAC from

taking any data from the local LLC. A negative one will

unfreeze it and allow any queued messages to be processed.

This will cause a burst effect and may cause toss of data

due to the connectionless nature of the system and the

limited buffer space.

MAC TYPE ::= 03h

This variable is a read only variable and indicates which

version of MAC is responding.

INTER FRAME_GAP ::= VALUE INTEGER_I

This is function cannot be changed with software in FODs and

this vari&ble will not have a effect on the performance

of the MA_':'.

BACK_OFF_LIMIT ::= VALUE_INTEGER_I

This is function cannot be changed with software in FODs and

this variable will not have a effect on the performance

of the MAC.

JAM_SIZE ::= VALUE_INTEGER_I

This is function cannot be changed with software in FODs and

this variable will not hove o effect on the performance

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT Page 20

INTERFACES 20 July 1987

of the MAC.

MAX FRAME_SIZE ::= VALUE INTEGER_I

This }s function cannot be changed with software in FODs and

this variable will not have a effect on the performance

of the MAC.

MIN_FRAME SIZE ::= VALUE_INTEGER_I

This is function cannot be changed with software in FODs and

this variable will not have a effect on the performance

of the MAC,

ADDRESS_SIZE ::= VALUE_INTEGER_I

This is function cannot be changed with software in FODs and

this variable will not have a effect on the performance

of the MAC.

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page 21

20 July 1987

STATUS_TYPE !:= _CHOICE

UNDEFINED_ERROR

SUCCESS

REFUSE_TOCOMPLY

NOT_SUPPORTED

ERROR_IN_PERFOR

NOT_AVAILABLE

BAD_PARAMETER_ID

BAD_PARAMETER_OPERATION

BAD_PARAMETER_VALUE

BAD_EXPECTED_VALUE

[0] VALUE_INTEGER_I

[I] VALUE_INTEGER_I

[2] VALUE_INTEGER_I

[3] VALUE_INTEGER_I

[4] VALUE_INTEGER_I

[5] VALUE_INTEGER_I

[6] VALUE_INTEGER_I

[7] VALUE_INTEGER_I

[8] VALUE_INTEGER_I

[9] VALUE_INTEGER_I

These ore responses to o command indicating the status of

the commend. Following ore expected uses of these responses;

UNDEFINED ERROR - Request was not understood or no

appropriate error message available

SUCCESS - A successful operation has been completed

REFUSE_TO_COMPLY - The operation was impossible or

NOT SUPPORTED - The operation is not supported or

recognized.

ERROR_IN_PERFOR - A error was encountered

during operation.

NOT_AVAILABLE - Information is not yet

available.

BAD_PARAMETER_ID - Parameter ID was not

recognized.

BAD_PARAMETER_OPERATION - Operation requested

was not recognized

BAD_PARAMETER_VALUE - The Parameter

value was bad.

BAD_EXPECTED_VALUE - The expected value was

illegal.

egal.

EVENT_TYPL"S ::= IMPLICIT SEQUENCE

EVENT_ClaSS_ EVENT_CLASS_TYPES

EVENT_CLASS_TYPES ::= CHOICE

LOCAL [0] EVENT_IDENTIFIER TYPES

REMOTE [1] EVENT_IDENTIFIER_TYPES

Events in this implementation ore always LOCAL (as opposed

to events that occurred in a remote node).

EVENT_IDENTIFIER_TYPES ::= CHOICE

DUPLICATE ADDRESS [2] VALUE_INTEGER_I I

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page22
20 July 1987

FAULTY_TRANSMIITER [3] VALUE_INTEGER_I
XMIT_QUEUE_THRESHOLD_EXCEEDED[4] VALUE_INTEGER_I
RECEIVE_QUEUE_THRESHOLD_EXCEEDED[5] VALUE_INTEGER_I
WATCH_DOG_TIMEOUT [6] VALUE_INTEGER_I
FROZEN [7] VALUE_INTEGER_I
MAX_RETRY_ENCOUNTERED[le] VALUE_INTEGER_I
BAD_MESSAGE_SENT [11] VALUE_ADDRESS_I

Theseeventsore reporteduponthe discoveryof the
fol owingconditions;

DUPLICATE_ADDRESS- Doesnothingsince FODsdoesn't report
other addresses.

FAULTY_TRANSMITTER- Doesnothingsince FODsdoesn't report
bedtransmitters.

XMIT_QUEUE_THRESHOLD_EXCEEDED- Floggedwhen the MAC

cannot get buffer space

for outgoing dote.

RECEIVE_QUEUE_THRESHOLD_EXCEEDED - Flogged when the MAC

cannot get buffer

space for incoming

data.

WATCH_DOG_TIMEOUT - Flogged if the hardware watch dag

timer expires.

FROZEN - Flogged when the MAC is frozen. Reported only

once.

MAX_RETRY_ENCOUNTERED - Flagged when a the max retry is

encountered. Any IRL4 interrupt

indicates the hardware retryed

beyond the retry limit.

BAD_MESSAG--E_SENT -Flagged when the MAC discovers o message

which does not agrees with its indicated

structure size (i.e. bad length field).

ACTION_VALUE_TYPES ::= CHOICE

RESET [O] VALUE_INTEGER_I

FREEZE/UNFREEZE [1] FREEZE_MAC

The ACTION VALUE_TYPES allow the following;

Reset value_integer_l = anything:

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT Page23
INTERFACES 20July 1987

A reset will flush oil queues, set all operating

parameters to their initial values, lose the token (f

its holding it), end await work from either the media

or the LLC.

FREEZE/UNFREEZE FREEZE_MAC = 1 will freeze mac.

= -1 will unfreeze mac.

A FREEZE/UNFREEZE command with Freeze option will make the

MAC main task ignore oil queues but the SM. In effect the

MAC is frozen to local service only. Pockets arriving from

remote nodes and from the LLC will be queued until the

buffer is exceeded or the MAC is unfrozen. The token

is still passed as normal. Commands from the Station

Manager are processed while frozen.

OPERATION_COMMAND_TYPES ::= CHOICE

tTEST_<< [0] READ_WRITE_VALUE_TYPES

TEST_>> [1] READ_WRITE_VALUE_TYPES

TEST__ [2] READ_WRITE_VALUE_TYPES

TEST_<> [3] READ_WRITE_VALUE_TYPES

TEST_<= [4] READ_WRITE_VALUE_TYPES

TEST_>= [5] READ_WRITE_VALUE_TYPES

<<_GIVEN_CONSTANT [6] GIVEN

>>_GIVEN_CONSTANT [7] GIVEN

z_GIVEN_CONSTANT [8] GIVEN

<>_GIVEN_CONSTANT [9] GIVEN

<=_GIVEN_CONSTANT [10] GIVEN

>=_GIVEN_CONSTANT [11] GIVEN

The above operations expects a variable (we'll call varl) to

be internal. The complete structure includes either a

variable or constant which we'll call var2. The constant is

used to o_erwrite Varl in case the operation test true so in

the case _ two internal vars being tested a constant is

also pass.eTd io. The above operation commands imply the

following:

TEST_<< -

TEST_>> -

TEST__ -

TEST_<> -

TEST_<= -

TEST_>= -

f varl << vat2 then varl=constant

f varl >> v'ar2 then vorl=constant

f vat1 _ vat2 then varl=constont

f varl <> vat2 then varl=constent

f varl <= vet2 then varl=constont

f vorl >= vat2 then varl=constont

<<_GIVEN_CONSTANT - if varl << constant then vorl=constant

>>_GIVEN_CONSTANT - if varl >> constant then vorl=constont

__GIVEN_CONSTANT - if vat1 _ constant then varl=constont

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT Page24
INTERFACES 20July 1987

<>_GIVEN_CONSTANT-
<=_GIVEN_CONSTANT-
>=_GIVEN_CONSTANT-

f varl <> constantthenvarl=constant
f vat1<= constantthenvarl=constont
f vat1 <= constantthenvarl=constant

Vat1 is e MACparameterto be tested (internal). its value
is alwaysreturnedalongwith a status. Var2 is a MAC
parameter(internal) or a constant (external) usedin the
comparisonof Varl (internal). Vat1alwaysrefers to
a variable locatedin the MAC.Vat2 is either located
in the MAC (a compare of two internal variables) or as

a constant (external) passed in. In all cases a true

test forces Varl to be a external constant.

CONSTANT ::= VALUE_INTEGER_I

VALUE_INTEGER_I ::= IMPLICIT LONG_WORD

VALUE_ADDRESS_I ::= iMPLICIT LONG_WORD (32 BITS)

VALUE_ADDRESS_16 ::= IMPLICIT ARRAY OF 16 LONG_WORDS

(32 BITS EACH)

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page25
20July 1987

4.2.3 SYNTAX -
STATION MANAGER INTERFACE SYNTAX

The station manager oommunioates to the MAC aoross the MII.
The syntax of suoh oommunioation is desoribed below

aooording to Abstraot Syntax Notation One or ASN.I (ISO DIS
8824). The information desoribed is enooded to the basio

ooding rules as found in ASN.I (ISO DIS 8825). Some sample
reoords follow the syntax notations.

4.2.4 FORMAL SYNTAX SPECIFICATION -

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Page 26

20 July 1987

MESSAGE_RECORD ::= [PRIVATE O] CHOICE

[0] SM_MAC_LM_SET_VALUE.INVOKE

[1] SM_MAC LM SET_VALUE.REPLY

[2] SM_MAC LM GET_VALUE.INVOKE

[3] SM_MAC_LM GET_VALUE.REPLY

[4] SM_MAC_LM_COMPARE_AND_SET_VALUE.INVOKE

[5] SM_MAC LM COMPARE_AND_SET_VALUE.REPLY

[6] SM_MAC_ACTION_VALUE.INVOKE

[7] SM_MAC_ACTION_VALUE.REPLY

[8] SM_MAC_EVENT VALUE.NOTIFY

[9] SM_MAC_EVENT_VALUE.REPLY

J

SM_MAC_LM_SET_VALUE.INVOKE ::= IMPLICIT SEQUENCE

PARAMETER_TYPE READ_WRITE_VALUE_TYPES ,

ACCESS_CONTROL_[NFO NULL

SM_MAC_LM_SET_VALUE.REPLY ::= IMPLICIT SEQUENCE

RETURN_VAL READ_WRITE VALUE_TYPES,

STATUS STATUS TYPE}

SM_MAC LM GET_VALUE.INVOKE ::= IMPLICIT SEQUENCE

PARAMETER_TYPE READ_WRITE_VALUE_TYPES ,

ACCESS_CONTROL_INFO NULL

SM_MAC LM GET_VALUE.REPLY ::= IMPLICIT SEQUENCE

PARAMETER_TYPE READ_WRITE_VALUE_TYPES

STATUS STATUS_TYPE |

SM_MAC_LM_COMPARE_AND_SET_VALUE. INVOKE : := IMPLICIT SEQUENCE

PARAMETER_TYPE DUMMY_RW_TYPES,

OPERAT I ON_COMMAND OPERAT I ON_COMMAND_TYPES,

ACCESS_CONTROL_ I NFO NULL }

SM_MAC_LM-'COMPARE_AND SET_VALUE. REPLY : : = I MPL | C I T SEQUENCE

RETURN-__AL - READ_WRITEVALUE_TYPES,

STATUS STATUS_TYPE

SM_MAC_ACTION_VALUE.INVOKE ::= IMPLICIT SEQUENCE

t PARAMETER_ID ACTION_VALUE TYPES ,

ACCESS CONTROL_INFO NULL_

SM_MAC ACTION_VALUE.REPLY ::= IMPLICIT SEQUENCE

STATUS STATUSTYPE,

ACTION_REPORT NULL

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page27
2eJuly 1987

MACSMEVENTLVALUE.NOTIFY::= IMPLICITSEQUENCE
EVENT_ID EVENT_TYPES

MACSMEVENT_VALUE.REPLY::= IMPLICITSEQUENCE
STATUS STATUS_TYPE

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page28
20July 1987

READ_WRITE_V_LUETYPES::= CHOICE {
[0] MAC_TYPE
[1] TS
[2] SLOTTIME
[3] INTER_FRAME_GAP
[4] ATTEMPT_LIMIT
[5] BACK_OFF_LIMIT

[6] JAMSIZE

[7] MAX_FRAME_SIZE

[8] MIN_FRAME_SIZE

[9] ADDRESS_SIZE

[10] EVENT_ENABLE_MASK

[11] MA_GROUP_ADDRESS

[12] MA_GROUP_ADDRESS_ALL

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT Poge29
INTERFACES 2@July 1987

DUMMYRWTYPES::=
MAC_TYPE
TS
SLOTTIME
INTER_FRAME_GAP
ATTEMPT_LIMIT
BACK_OFFLIMIT
JAM_SIZE
MAX_FRAME_SIZE
MIN_FRAME_SIZE
ADDRESS_SIZE
EVENT_ENABLE_MASK
MA_GROUP_ADDRESS
MA_GROUP_ADDRESS_ALL

CHOICE
[0] VALUE_INTEGER_I
[I] VALUE_ADDRESS_I
[2] VALUEINTEGERI
[3] VALUE_INTEGERI
[4] VALUEINTEGER_I
[5] VALUE_INTEGER_I
[6] VALUE_INTEGER_I
[7] VALUE_INTEGER1
[8] VALUE_INTEGER_I
[9] VALUE_INTEGER_I
[1@]VALUEINTEGER_I
[12] VALUE_INTEGER1
[13] VALUE_INTEGER_I

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

TS::= VALUE_ADDRESS_I

NS::= VALUE_ADDRESS_I

SLOT_TIME::= VALUE_INTEGER_I

EVENT_ENABLE_MASK::= EVENT_ENABLE_BITS

MA_GROUP_ADDRESS::= VALUE_ADDRESS_I

MA_GROUP_ADDRESS_ALL::= VALUE_ADDRESS_16

FREEZE_MAC::= VALUE_INTEGER_I

MAC_TYPE::= 03h

Page30
20July 1987

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page 31

28 July 1987

STATUS_TYPE T:= _CHOICE

UNDEFINED_ERROR

SUCCESS

REFUSE TO COMPLY

NOTSUPPORTED

ERROR IN PREFOR

NOT_AVAILABLE

BAD_PARAMETER_ID

BAD_PARAMETER_OPERERATION [7]

BAD_PARAMETER_VALUE [8]

BAD_EXPECTED_VALUE [9]

[0] VALUE_INTEGER_I

[1] VALUE_INTEGER_I

[2] VALUE_INTEGER_I

[3] VALUE INTEGER_I

[4] VALUE_INTEGER_I

[5] VALUE_INTEGER_I

[6] VALUE_INTEGER_I

VALUE_INTEGER_I

VALUE_INTEGER_I

VALUE_INTEGER_I

EVENT TYPES ::= IMPLICIT SEQUENCE

EVENT_CLASS EVENT_CLASSTYPES

EVENT_CLASS_TYPES ::= CHOICE

LOCAL [0] EVENT_IDENTIFIER_TYPES

REMOTE [I] EVENT_IDENTIFIER_TYPES

EVENT_IDENTIFIER_TYPES ::= CHOICE

DUPLICATE_ADDRESS [2]

FAULTY_TRANSMITTER [3]

XMIT_QUEUE_THRESHOLD_EXCEEDED [4]

RECEIVE_QUEUETHRESHOLD_EXCEEDED [5]

WATCH_DOG_TIMEOUT [6]

FROZEN [7]

MAX_RETRY_ENCOUNTERED

BAD_MESSAGE_SENT

VALUE_INTEGER_I

VALUE_INTEGER_I

VALUE_INTEGER_I

VALUE_INTEGER_I

VALUE_INTEGER_I

VALUE_INTEGER_I

[10] VALUE_INTEGER_I

[11] VALUE_ADDRESS_I

EVENT_ENABLE_BITS ::= BIT STRING

DUPLICATE_ADDRESS (2)

FAULTY_TRANSMITTER (3)

XMIT_QUEUE_THRESHOLD_EXCEEDED (4)

RECEIVE_QUEUE_THRESHOLD_EXCEEDED (5)

WATCH_DOG_TIMEOUT (6)

FROZEN-_ (7)

MAX_RETR3'_ENCOUNTERED (10)

BAD_MES_GE_SENT (11)

-- Where I

!
i s enab Ied

ACTION VALUE_TYPES ::= CHOICE

{ RESET [0] VALUE_INTEGER_I

FREEZE/UNFREEZE [1] FREEZE_MAC

OPERATION_COMMAND_TYPES ::= CHOICE

tTEST_<< [@] DUMMY_RW_TYPES

TEST_>> [1] DUMMY RW TYPES

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Poge 32

20 Ju y 1987

TEST__ [2] DUMMY RW TYPES

TEST_<> [3] DUMMY RW TYPES

TEST_<: [4] DUMMY_RW_TYPES

TEST_>= [5] DUMMY RW TYPES

<<_GIVEN_CONSTANT [6] GIVEN

>>_GIVEN_CONSTANT [7] GIVEN

zGIVEN_CONSTANT [8] GIVEN

<>_GIVEN_CONSTANT [9] GIVEN

<=_GIVEN_CONSTANT [le] GIVEN

>=_GIVEN_CONSTANT [11] GIVEN

GIVEN ::= CHOICE

[0] VALUE_iNTEGER_I I

[1] VALUE_ADDRESS_I l

CONSTANT ::= VALUE_INTEGER_I

VALUE_INTEGER_I ::= IMPLICIT INTEGER

VALUE_ADDRESS_I ::= IMPLICIT LONG_WORD (32 BITS)

VALUE_ADDRESS_16 ::= IMPLICIT ARRAY OF 16 LONG WORDS

(32 BITS EACH)

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Page 33

20 July 1987

4.2.5 IEEE 802.4 SM COMMAND DESCRIPTIONS -

SM_MAC LM_SET_VALUE.]NVOKE

PARAMETER_TYPE, ACCESS CONTROL_INFO

The objective of the SM_MAC_LM_SET_VALUE.TNVOKE command by

the SM is to set a value in the MAC as defined by the

parameter_type structure. This structure specifies both the

variable to be set and the value to which it is set.

SM_MAC_LM_SET_VALUE.REPLY

STATUS

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous

SM MAC LM SET_VALUE.INVOKE. The SM expects the MAC to

overwrite the SM_MAC_LM_SET_VALUE.INVOKE with the

SM_MAC_LM_SET_VALUE.REPLY thus allowing the SM to release

the message buffer.

SM_MAC_LM_GET_VALUE.INVOKE

PARAMETER_TYPE, ACCESS_CONTROL_INFO

The objective of the SM_MAC_LM_GET_VALUE. INVOKE command by

the SM is to get a value in the MAC as defined by the

parameter_type structure. This structure specifies the

variable to be read.

SM_MAC_LM_GET_VALUE.REPLY

{ PARAMETER_TYPE, STATUS

The objective of the reply by the MAC to the SM is to

indicate _-- the success or failure of a previous

SM_MAC_LM-GET_VALUE.INVOKE. The SM expects the MAC to

overwrite the SM_MAC_LM_GET_VALUE.INVOKE with the

SM_MAC_LM_GET_VALUE.REPLY thus allowing the SM to release

the message buffer.

SM_MAC_LM_COMPARE_AND_SET_VALUE.INVOKE

PARAMETER_TYPE, OPERATION_COMMAND,

ACCESS_CONTROL_INFO

The Compare and Set value command forces the MAC to do a

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page 34

2e July 1987

comparison (df either a given constant or of a MAC variable)

against a MAC variable. If the comparison is true then the

MAC variable is over written. The PARAMETER_TYPE indicates

the parameter to be over written and the value to use. The

OPERATION_COMMAND structure specifies the comparison to do,

end the constant or MAC variable to use in the comparison.

SM_MAC_LM_COMPARE_AND_SET_VALUE.REPLY

STATUS, RETURN_VAL

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous

SM_MAC_LM_COMPARE_AND_SET_VALUE.INVOKE . The SM expects the

MAC to overwrite the SM_MAC_LM_COMPARE_AND SET_VALUE.INVOKE

with the SM MAC LM COMPARE_AND_SET_VALUE.REPLY thus allowing

the SM to retease the message buffer.

SM_MAC_ACTION_VALUE.INVOKE

PARAMETER_ID, ACCESS_CONTROLINFO

The objective of the SM_MAC_ACTTON_VALUE.TNVOKE command by

the SM is to force a MAC operation (i.e. reset, freeze) in

the MAC as defined by the parameter_TD structure. This

structure specifies the action to be performed.

SM_MAC_ACTION_VALUE.REPLY

STATUS, ACTION_REPORT

The objective of the reply by the MAC to the SM is to

indicate the success or failure of a previous

SM_MAC_ACTION_VALUE.INVOKE . The SM expects the MAC to

overwrite the SM_MAC_ACTION_VALUE.INVOKE with the

SM MAC_ACTION_VALUE.REPLY thus allowing the SM to release

the messog.e buffer.

MAC_SM_EVENT_VALUE.NOTIFY

EVENT_ID I

The objective of the MAC_SM_EVENT_VALUE.NOTIFY command by

the MAC is to report o event which has occurred in the MAC

as defined by the EVENT_ID structure. This structure

specifies the Event and an integer. These events can be

masked by setting the EVENT_MASK variable.

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
]NTERFACES

Page 35

20 July 1987

MAC'SM .EVENT_VALUE.REPLY

I STATUS l

The objective of the following reply by the SM to the MAC is

to indicate the success or failure of a previous

MAC SM EVENT_VALUE.NOTIFY. The MAC expects the SM to

overwrite the MAC SM EVENT_VALUE.NOTIFY with the

MAC_SM_EVENT_VALUE.REPLY thus allowing the MAC to release

the message buffer.

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page36
20July 1987

Variableswhichcanbeaccessedore;

VARIABLENAME
TS
NS
SLOT_TIME
HI_PRI_TOKEN_HOLD_TIME
MAX_AC_4_ROTAT]ON_TIME x
MAX_AC_2_ROTATION_TIME x
MAX_AC_OROTATION_TIME x
MAC_RING_MAINTENANCE_ROTATION_TIMEx
RING_MAINTENANCE_TIMER_INITIAL_VALUEx
MAX_INTER_SOLICIT_COUNT x
MIN_POSTSILENCE_PREAMBLELENGTH x
EVENT_ENABLE_MASK x
MAXRETRY_LIMIT x
MAGROUP_ADDRESS x
CHANNEL_ASSIGNMENTS x
TRANSMITTED_POWER_LEVEL_ADJUSTMENTx
TRANSMITTED_OUTPUT_INHIBITSx
RECEIVEDSIGNAL_SOURCES x
SIGNALING_MODE x
RECEIVED_SIGNAL_LEVEL_REPORTINGx
LANTOPOLOGY_TYPE x
MACTYPE x

ReadWrite RealEmulated
X X X

X X X

X X X

X X X

X X

X X

X X

X X

X X

X X

X X

X X

x X

X ×

X X

X X

X X

X X

X ×

X X

X X

X

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Page 37

2e July 1987

READ_WRITE_VALUE_TYPES ::=

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[le]
[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]

[28]

[21]

[22]

CHOICE

MAC_TYPE

NS

SLOT_TIME

HI_PRI_TOKEN HOLD_TIME

MAX_AC_4 ROTATION_TIME

MAX_AC_2_ROTATiON_TIME

MAX_AC_O_ROTATION_TIME

MAC_RING_MAINTENANCE_ROTATION_TIME

RING_MAINTENANCE_TIMER INITIAL_VALUE

MAX_INTER_SOLICIT COUNT

MIN_POST_SILENCE_PREAMBLE_LENGTH

EVENT_ENABLE_MASK

MA× RETRY_LIMIT

MA_GROUP_ADDRESS

MA_GROUP_ADDRESS_ALL

CHANNELASSIGNMENTS

TRANSMITTED_POWER_LEVEL_ADJUSTMENT

TRANSMITTED OUTPUT_INHIBITS

RECEIVED_SIGNAL_SOURCES

SIGNALING_MODE

RECEIVED_SIGNALLEVEL_REPORTING

LAN_TOPOLOGY_TYPE

TS

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page38
20 July 1987

TS ::= VALUE_ADDRESS_I

This variable representsthe addressof this station. Since
FaDShas its addressset in hardwarethis variable hasno
effect onMACperformance.

NS::= VALUE_ADDRESS_I

This variable representsthe addressof the next station.
TheIEEE802.4wouldnormallycalculate this addresshowever
in this implementationthis addressmustbeset in order for
the MACto knowwherethe next station is in order to pass
the token.

SLOT_TIME::= VALUE_INTEGER_I

This variable representsthe slot timeof this station. This
is the maximumtime this station mustwait on another

station to respond to a transmition. The FODS knows this as

T_Gap. Since FODS has T_Gap set in hardware this variable

has no effect on MAC performance.

HI_PRI_TOKEN_HOLD_TIME ::= VALUE_INTEGER_I

This variable represents the token hold time of this

station. This is the maximum time this station can hang on

to the token. If this time expires then the token must be

passed.

MAX_AC_4_ROTATION_T]ME ::= VALUE_INTEGER_I

This variable con be written to and read but is not used in

this implementation to perform o function and will have no

effect on--[he MAC performance.

MAX_AC_2_ROTATION_TIME ::= VALUE_INTEGER_I

This variable con be written to and read but is not used in

this implementation to perform o function and will have no

effect on the MAC performance.

MAX_AC_e_ROTATION_TIME ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page 39

20 July 1987

this implementation to perform a function and will have no

effect on the MAC performance,

MAC_RING_MAINTENANCE_ROTATION_TIME ::= VALUE_INTEGER 1

This variable can be written to and read but is not used in

this implementation to perform a function and will have no

effect on the MAC performance.

RING_MAINTENANCE_TIMER_INITIAL_VALUE ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will have no

effect on the MAC performance.

MAX_INTER_SOLICIT_COUNT ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will hove no

effect on the MAC performance.

MIN_POST_S]LENCE_PREAMBLE_LENGTH ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will have no

effect on the MAC performance.

IN_RING_DESIRED ::= VALUE_INTEGER_I

This variable will allow the MAC to participate in the ring

when set to one. When the command initially comes to set

this vorigJ_le to a one the token is kicked off (presumable

for the f-t'rst time). Sending multiple IN_RING_DESIRED

commands o7 one will generate multiple tokens in the media.

This is odeviation from IEEE 802.4, but the described usage
of

this variable will be very

useful for testing. A negative one command will tell the MAC

to consume the next tokens it receives (i.e. it will do

nothing and not pass the token currently held). This will,

of

course, lock up the media when the last token is consumed so

at some point it will be necessary to set IN_RING_DESIRED to

one again.

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page40
20July 1987

This work is implemented by setting force_tokenpass to true

and calling MAC_Transmit_queue() when the IN_RING_DESIRED =

1 or by sending a NULL work package to the interrupt

routines when IN_RING_DESIRED = -1 (this will consume the

current or next token). Keep in mind that this system will

automatically attempt to consume extra tokens so the station

manager may have to watch the dual token event reports if it

really wishes to keep track of multiple tokens.

EVENT_ENABLE_MASK ::= EVENT_ENABLE_BITS

EVENT_ENABLE_BITS ::= BIT STRING

NS_CHANGED (8),

NS_NULL (1),

DUPLICATE_ADDRESS (2),

FAULTY_TRANSMITTER (3)

XMIT_QUEUE_THRESHOLD_EXCEEDED (4)

RECEIVE_QUEUE_THRESHOLD_EXCEEDED (5)

WATCH_DOG_TIMEOUT (6)

FROZEN (7)

TOKEN_LOST (8)

DUALTOKEN (9)

MAX_RETRY_ENCOUNTERED (10) }

-- Where 1 is enabled

The MAC will report events when discovered and the

appropriate bit is set in the MASK above. Bit 0 is the

NS_Station, bit 1 is the NS_NULL etc. These bits are

inspected each time the event has occurred end the MAC task

is active. The event is reported only once whenever the

actual occurence is detected.

MAX_RETRY_LIMIT ::= VALUE_INTEGER_I

This is the maximum number of times that a packet will be

retransmi__'-_ed when the acknowledgement indicates a bad

tronsmitt'.ron._Since this is o connectionless system this

variable should not be used. However, it will be loaded into

the hardware transmit register whenever a packet is to be

sent and the hardware will actually perform retrys.

MA_GROUP ADDRESS ::= VALUE_ADDRESS_I

The MAC can respond to a group of group addresses. This is

one of two methods for the Station Manager to tell the MAC

which addresses are acceptable. This implementation will

support a total of 16 group addresses. A positive value in

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES Page41

20July 1987

this commandwill set this address as part of the group

addresses (unless there all used up) and a negative address

will delete this address from the table.

MA_GROUP_ADDRESS_ALL ::= VALUE_ADDRESS_16

The MAC can respond to a group of group addresses. This is

one of two methods for the Station Manager to tell the MAC

which addresses are acceptable. This implementation will

support a total of 16 group addresses. This command will

write or read all 16 addresses at once. Addresses which ore

not valid addresses should be set to a negative one.

Therefore only positive addresses will be passed in with

this command unless there a negative one (a null address).

CHANNEL_ASSIGNMENTS ::= VALUE_INTEGE__I

This variable can be written to end read but is not used in

this implementation to perform e function and will hove no

effect on the MAC performance.

TRANSMITTED_POWER_LEVEL_ADJUSTMENT ::= VALUE_]NTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will hove no

effect on the MAC performance.

TRANSMITTED_OUTPUT_INHIBITS ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will have no

effect on the MAC performance.

RECE]VED__ST]GNAL_SOURCES ::= VALUE_INTEGER_I

This variable can be written to end read but is not used in

this implementation to perform e function end will have no

effect on the MAC performance.

SIGNALING MODE ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will have no

effect on the MAC performance.

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Page 42

2g July 1987

RECEIVED_SIGNAL_LEVEL_REPORTING ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will have no

effect on the MAC performance.

LAN_TOPOLOGY_TYPE ::= VALUE_INTEGER_I

This variable can be written to and read but is not used in

this implementation to perform a function and will have no

effect on the MAC performance.

FREEZE MAC ::= VALUE INTEGER_I

This variable when set to one will freeze the MAC from

taking any data from the local LLC. A negative one will

unfreeze it and allow any queued messages to be processed.

This will cause a burst effect and may cause loss of dote

due to the connectionless nature of the system and the

limited buffer space.

MAC_TYPE ::= O4h

This variable is a read only variable and indicates which

version of MAC is responding.

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page43

20 Ju y 1987

STATUSTYPE-::= CHOICE

UNDEFINED_ERROR

SUCCESS

REFUSE_TO_COMPLY

NOT_SUPPORTED

ERROR_iN_PERFOR

NOT_AVAILABLE

BAD_PARAMETER_ID

BAD_PARAMETER_OPERATION

BAD_PARAMETERVALUE

BAD_EXPECTED_VALUE

[e] VALUE_INTEGER_I

[1] VALUE_INTEGER_I

[2] VALUE_INTEGER_I

[3] VALUE_INTEGER_I

[4] VALUE_INTEGER_I

[5] VALUE_INTEGER_I

[6] VALUE_INTEGER_I

[7] VALUE_INTEGER_I

[8] VALUE_INTEGER_I

[9] VALUE_INTEGER_I

These are responses to a command indicating the status of

the command. Following are expected uses of these responses;

UNDEFINED_ERROR - Request was not 'understood or no

appropriate error message available

SUCCESS - A successful operation has been completed.

REFUSE TO COMPLY - The operation was impossible or il

NOT_SUPPORTED - The operation is not supported or

recognized.

ERROR IN_PERFOR - A error was encountered

during operation.

NOT_AVAILABLE - Information is not yet

available.

BAD_PARAMETER_ID - Parameter]D was not

recognized.

BAD_PARAMETER OPERATION - Operation requested

was not recognized

BAD_PARAMETER_VALUE - The Parameter

value was bad.

BAD_EXPECTED VALUE - The expected value was

illegal.

egal.

EVENT_TYP-_--S ::= IMPLICIT SEQUENCE

I EVENT_CAI;Z'ASS EVENT_CLASS_TYPES

EVENT_CLASS_TYPES ::= CHOICE

LOCAL [el EVENT_IDENTIFIER_TYPES

REMOTE [I] EVENT_IDENTIFIER_TYPES

Events in this implementation are always LOCAL (as opposed

to events that occurred in a remote node).

EVENT_IDENTIFIER TYPES ::= CHOICE

NS_CHANGED [e] VALUE_INTEGER_I

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Page 44

2e July 1987

NS_NULL

DUPLICATE_ADDRESS

FAULTY_TRANSMITTER

XMIT_QUEUE_THRESHOLD_EXCEEDED

RECEIVE_QUEUE_THRESHOLD_EXCEEDED

WATCH DOG TIMEOUT

FROZEN

TOKEN_LOST

DUALTOKEN

MAX_RETRY_ENCOUNTERED

BAD_MESSAGESENT

[I] VALUE_INTEGER_I

[2] VALUE_INTEGER_I

[3] VALUE_INTEGER I

[4] VALUE INTEGER_I

[5] VALUE_INTEGER_I

[6] VALUE_INTEGER_I

[7] VALUE INTEGER_I

[8] VALUE_INTEGER_I

[9] VALUE_INTEGER_I

[le] VALUE INTEGER_I

[11] VALUE_ADDRESS_I

These events ore reported upon the discovery of the

following conditions;

NS_CHANGED - Flagged when the event routine discovers e

change in the NS

address.

NS NULL - Flagged when the NS is set to NULL

DUPLICATE_ADDRESS - Does nothing since FODs doesn't report

other addresses.

FAULTY_TRANSMITTER - Does nothing since FODs doesn't report

bad transmitters.

XMIT_QUEUE_THRESHOLD_EXCEEDED - Flagged when the MAC

cannot get buffer space

for outgoing data.

RECEIVE_QUEUE_THRESHOLD_EXCEEDED - Flagged when the MAC

cannot get buffer

space for incoming

data.

WATCH_DOG.--TIMEOUT - Flagged if the hardware watch dog

.-- timer expires.

FROZEN - Flagged when the MAC is frozen. Reported only

once,

TOKEN_LOST - Flagged when the token is detected as

lost.

DUAL_TOKEN - Flagged when a extra token is discovered.

MAX_RETRY_ENCOUNTERED - Flagged when a the max retry is

encountered. Any IRL4 interrupt

indicates the hardware retryed

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Page 45

2e July 1987

beyond the retry limit.

BAD_MESSAGE_SENT -Flagged when the MAC discovers a message

which does not agrees with its indicated

structure size (i.e. bad length field).

ACTION_VALUE_TYPES ::= CHOICE

RESET [0] VALUE_INTEGER_I I

FREEZE/UNFREEZE [I] FREEZE_MAC I

ENTER THE_RING [2] IN_RING_DESIRED I

The ACTION_VALUE_TYPES allow the _, Ilowing;

Reset value_integer_l = anything:

A reset will flush all queues, set all operating

parameters to their initial values, lose the token (if

its holding it), and await work from either the media

or the LLC.

FREEZE/UNFREEZE FREEZE_MAC = 1 will freeze mac.

= -1 will unfreeze mac.

A FREEZE/UNFREEZE command with Freeze option will make the

MAC main task ignore oll queues but the SM. In effect the

MAC is frozen to local service only. Packets arriving from

remote nodes and from the LLC will be queued until the

buffer is exceeded or the MAC is unfrozen. The token

is still passed as normal. Commands from the Station

Manager ore processed while frozen.

ENTER_THE_RING IN_RING_DESIRED = 1 create token

= -1 consume token

A ENTER_TI;J.E_RING command will convince the MAC it is the

holder of_--the token. If this command is sent twice in

a row the_the MAC will;

1) In the case of the MAC currently holding the token, do

nothing.

2) In the case of the MAC about ready to receive the

token, a dual token may be reported end the extra token

is consumed (an inherent operat on in this design).

3) In the case of the MAC in a die state, the token

is token end passed on when appropriate. Since this is

a CSMA/CD machine it can operate with two tokens for

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page46
2gJuly 1987

sometime before_it discoversandconsumesoneof them
(802.4machinesalso havethis ability but are for less
forgiving of collisions).

OPERATION_COMMAND_TYPES::= CHOICE
{TEST_<< [e] READ_WRITE_VALUE_TYPES
TEST_>> [1] READ_WRITE_VALUE_TYPES
TEST_= [2] READ_WRITEVALUE_TYPES
TEST_<> [3] READ_WRITE_VALUE_TYPES
TEST_<= [4] READ_WRITEVALUE_TYPES
TEST_>= [5] READ_WRITEVALUE_TYPES
<<_GIVEN_CONSTANT[6] GIVEN
>>_GIVEN_CONSTANT[7] GIVEN
=_GIVEN_CONSTANT[8] GIVEN
<>_GIVEN_CONSTANT [9] GIVEN

<=_GIVEN_CONSTANT [le] GIVEN

>=_GIVEN_CONSTANT [11] GIVEN

The above operations expects a variable (we'll call varl) to

be internal. The complete structure includes either a

variable or constant which we'll call vat2. The constant is

used to overwrite Varl in case the operation test true so in

the case of two internal vars being tested a constant is

also passed in. The above operation commands imply the

following:

TEST_<< -

TEST_>> -

TEST: -

TEST_<> -

TEST_<= -

TEST_>= -

f vorl << var2 then varl=constant

f varl >> var2 then varl=constant

f varl = var2 then varl=constant

f varl <> var2 then varl=constant

f varl <= vat2 then varl=constant

f vat1 >= var2 then varl=constant

<<_GIVEN_CONSTANT - if varl << constant then varl=constant

>>_GIVEN_CONSTANT -

=_GIVEN_CONSTANT -

<>_GIVEN_CONSTANT -

<=_GIVEN_GONSTANT -

>=_GIVEN_-'-ONSTANT -

f varl >> constant then varl=constant

f varl : constant then wart=constant

f varl <> constant then varl=constant

f varl <= constant then varl=constant

f varl <= constant then varl=constant

Varl is a MAC parameter to be tested (internal). its value

is always returned along with a status. Vor2 is a MAC

parameter (internal) or a constant (external) used in the

comparison of Vorl (internal). Varl always refers to

a variable located in the MAC. Var2 is either located

in the MAC (a compare of two internal variables) or as

o constant (external) passed in, In all cases a true

test forces Varl to be a external constant.

CONSTANT ::= VALUE_INTEGER_I

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT Poge47
INTERFACES 2eJuly 1987

VALUE_]NTEGER_I::= iMPLICIT LONG_WORD

VALUE_ADDRESS_I ::= IMPLICIT LONG_WORD (32 BITS)

VALUE_ADDRESS_16 ::= IMPLICIT ARRAY OF 16 LONG_WORDS

(32 BITS EACH)

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT Poge 48

INTERFACES 20 July 1987

4.2.6 SYNTAX -

STATION MANAGER INTERFACE SYNTAX

The station manager communicates to the MAC across the MII.

The syntax of such communication is described below

according to Abstract Syntax Notation One or ASN.I (ISO DIS

8824). The information described is encoded to the basic

coding rules as found in ASN.I (ISO DIS 8825). Some sample
records follow the syntax notations.

4.2.7 FORMAL SYNTAX SPECIFICATION -

TOKEN/STAR BUS MAC SOFTWAREUSERSDOCUMENT
INTERFACES Page 49

20 July 1987

MESSAGE_RECORD ::= [PRIVATE e] CHOICE

[0] SM_MAC_LM_SET_VALUE.INVOKE

[1] SM_MAC_LM_SET_VALUE.REPLY

[2] SM_MAC_LM_GET_VALUE.INVOKE

[3] SM_MAC_LM_GET_VALUE.REPLY

[4] SM-MAC-LM_COMPARE_AND_SET_VALUE.INVOKE

[5] SM-MAC_LM_COMPARE_AND_SET_VALUE.REPLY

[6] SM_MAC_ACTION_VALUE. INVOKE

[7] SM_MAC_ACTION_VALUE.REPLY

[8] SM_MAC_EVENT_VALUE.NOTIFY

[9] SM_MAC_EVENT_VALUE.REPLY

SM_MAC_LM_SET_VALUE.]NVOKE ::= IMPLICIT SEQUENCE

PARAMETERTYPE READ_WRITE_VALUE_TYPES ,

ACCESS_CONTROL_INFO NULL }

SM_MAC_LM_SET_VALUE.REPLY ::= IMPLICIT SEQUENCE

RETURN_VAL READ_WRITE VALUE TYPES,

STATUS STATUS_TYPE_

SM_MAC_LM_GET VALUE.INVOKE ::= IMPLICIT SEQUENCE

PARAMETER_TYPE READ_WRITE_VALUE_TYPES ,

ACCESS_CONTROL_INFO NULL

SM_MAC_LM_GET VALUE.REPLY ::= IMPLICIT SEQUENCE

PARAMETER_TYPE READ_WRITE_VALUETYPES ,

STATUS STATUS_TYPE

SM-MAC_LM_COMPARE_AND_SET_VALUE.INVOKE ::= IMPLICIT SEQUENCE

PARAMETER_TYPE DUMMY_RW_TYPES,

OPERATIONCOMMAND OPERATION_COMMAND_TYPES,

ACCESS_CONTROL_INFO NULL

SM-MAC_LI__-COMPARE_AND_SET_VALUE.REPLY ::= IMPLICIT SEQUENCE

RETURN_--VA_ READ_WRITE_VALUE_TYPES,

STATUS STATUS_TYPE

SM_MAC_ACTION_VALUE. INVOKE ::= IMPLICIT SEQUENCE

PARAMETER_ID ACTION_VALUE_TYPES ,

ACCESS_CONTROL_INFO NULL_

SM_MAC_ACTION_VALUE.REPLY ::= IMPLICIT SEQUENCE

STATUS STATUS_TYPE,

ACTION_REPORT NULL

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES Page55

20July 1987

ACTION_VALUE_TYPES::= CHOICE
RESET [0] VALUE_INTEGER_I

FREEZE/UNFREEZE [1] FREEZE_MAC

ENTER_THE_RING [2] IN_RING_DESIRED

OPERATION_COMMAND_TYPES ::= CHOICE

TEST<< [e] DUMMY_RW_TYPES

TEST_>> [1] DUMMY RW TYPES

TEST_= [2] DUMMY_RW_TYPES

TEST_<> [3] DUMMY RW .TYPES

TEST_<: [4] DUMMY_RW_TYPES

TEST_>= [5] DUMMY_RW_TYPES

<<_GIVEN_CONSTANT [6] GIVEN

>>_GIVEN_CONSTANT [7] GIVEN

=_GIVENCONSTANT [8] GIVEN

<>_GIVEN CONSTANT [9] GIVEN

<=_GIVEN_CONSTANT [10] GIVEN

>=_GIVEN_CONSTANT [11] GIVEN

GIVEN ::= CHOICE

[0] VALUE_INTEGER_I J

[I] VALUE_ADDRESS_I l

CONSTANT ::= VALUE_INTEGER_I

VALUE_INTEGER I ::= IMPLICIT INTEGER

VALUE_ADDRESS I ::=

VALUE_ADDRESS_16 ::=

IMPLICIT LONG_WORD (32 BITS)

IMPLICIT ARRAY OF 16 LONG_WORDS

(32 BITS EACH)

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Poge 5e

20 July 1987

MAC_SM_EVENT_VALUE.NOTIFY ::= IMPLICIT SEQUENCE

EVENT_ID EVENT_TYPES

MAC SM EVENT_VALUE.REPLY ::= IMPLICIT SEQUENCE

STATUS STATUS_TYPE

%
TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Page51
20July 1987

READ_WRITE_VALUE_TYPES::=
[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

[18]
[19]

[2e]

[21]

[22]

CHOICE

MAC TYPE

NS

SLOT TIME

HI_PRI_TOKEN_HOLD_TIME

MAX_AC_4_ROTAT|ON_TIME

MAX_AC_2_ROTATION_TIME

MAX_AC_g_ROTATION_TIME

MAC_RING_MAINTENANCE_ROTATION_TIME

RING_MAINTENANCE_TIMER_INITIAL_VALUE

MAX_INTER SOLICIT COUNT

MIN_POST_SILENCE_PREAMBLE_LENGTH

EVENT_ENABLE_MASK

MAX_RETRY_LIMIT

MA_GROUP_ADDRESS

MA_GROUP_ADDRESSALL

CHANNEL ASSIGNMENTS

TRANSMITTEDPOWERLEVEL_ADJUSTMENT

TRANSMITTED OUTPUT INHIBITS

RECEIVED SIGNAL SOURCES

SIGNALING_MODE

RECEIVED_SIGNAL_LEVEL_REPORTING

LAN_TOPOLOGY_TYPE

TS

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
iNTERFACES

Page 52

20 July 1987

DUMMY RW TYPES ::= CHOICE

MAC_TYPE

NS

SLOT_TIME

HI_PRI_TOKEN_HOLD_TIME

MAX_AC_4_ROTATION_TIME

MAX_AC_2_ROTATION_TIME

MAX_AC_O_ROTATION_TIME

MAC_RING_MAINTENANCE_ROTATION_TIME

[0] VALUE_INTEGER_I

[I] VALUE_INTEGER_I

[2] VALUE_INTEGER_I

[3] VALUE_INTEGER_I

[4] VALUE_INTEGER_I

[5] VALUE_INTEGER_I

[6] VALUE_INTEGER_I

[7] VALUE_INTEGER_I

RING_MAINTENANCE_TIMER_INITIAL_VALUE [8] VALUE_INTEGER_I

MAX_INTER_SOLICIT_COUNT

MIN_POST_SILENCE_PREAMBLE_LENGTH

EVENT_ENABLE_MASK

MAX_RETRY_LIMIT

MA_GROUP_ADDRESS

MA_GROUP_ADDRESS_ALL

CHANNEL_ASSIGNMENTS

TRANSMITTED_POWER_LEVEL_ADJUSTMENT

TRANSMITTED_OUTPUT_INHIBITS

RECEIVED_SIGNAL_SOURCES

SIGNALING MODE

RECEIVED_SIGNAL_LEVEL_REPORTING

LAN_TOPOLOGY_TYPE

TS

[9] VALUE_INTEGER_I

[10] VALUE_INTEGER_I

[11] VALUE_INTEGER_I

[12] VALUE_INTEGER_I

[13] VALUE_INTEGER_I

[14] VALUE_INTEGER_I

[15] VALUE_INTEGER_I

[16] VALUE_INTEGER_I

[17] VALUE INTEGER_I

[18] VALUE_INTEGER_I

[19] VALUE_INTEGER_I

[20] VALUE_INTEGER_I

[21] VALUE_INTEGER_I

[22] VALUE_INTEGER_I

TOKEN/STAR BUS MAC SOFTWARE USERS DOCUMENT

INTERFACES
Page 53

2e July 1987

TS ::= VALUE_ADDRESS_I

NS ::= VALUE_ADDRESS_I

SLOT TIME ::= VALUE_INTEGER_I

HI_PRI_TOKEN HOLD_TIME ::= VALUE_INTEGER_I

MAX_AC_4_ROTATION_TIME ::= VALUE_INTEGER_I

MAX_AC_2_ROTATION_TIME ::= VALUE INTEGER 1

MAX_AC_O_ROTATION_TIME ::= VALUE_INTEGER_I

MAC_RING_MAINTENANCE_ROTATION TIME ::= VALUE_INTEGER t

RING-MAINTENANCE TIMER_INITIAL_VALUE ::= VALUE INTEGER_I

MAX_INTER_SOLICIT_COUNT ::= VALUE_INTEGER_I

MIN_POST_SILENCE PREAMBLE_LENGTH ::= VALUE_INTEGER_I

IN_RING DESIRED ::= VALUE_INTEGER_I

EVENT_ENABLE_MASK ::= EVENT_ENABLE_BITS

MAX RETRY_LIMIT ::= VALUE]NTEGER_I

MA_GROUP_ADDRESS ::= VALUE_ADDRESS_I

MA_GROUP_ADDRESS_ALL ::= VALUE_ADDRESS_16

CHANNEL_ASSIGNMENTS ::= VALUE_INTEGER 1

TRANSMITTED POWER_LEVEL_ADJUSTMENT ::= VALUE_INTEGER_I

TRANSMITTE._) OUTPUT_INHIBITS ::= VALUE_INTEGER_I

RECEIVED__IGNAL_SOURCES ::= VALUE_INTEGER_I

SIGNALING_MODE ::= VALUE_INTEGER 1

RECEIVED_SIGNAL_LEVEL_REPORTING ::= VALUE_INTEGER_I

LAN_TOPOLOGY_TYPE ::= VALUE_INTEGER_I

FREEZE_MAC ::= VALUE_INTEGER_I

MAC_TYPE ::= 04h

TOKEN/STARBUSMACSOFTWAREUSERSDOCUMENT
INTERFACES

Poge54
20Ju y 1987

STATUSTYPE::= _CHOICE

I UNDEFINED_ERROR

SUCCESS

REFUSE_TO_COMPLY

NOT_SUPPORTED

ERROR_IN_PREFOR

NOTAVAILABLE

BAD_PARAMETER_ID

BAD_PARAMETEROPERERATION

BAD_PARAMETER_VALUE

BAD_EXPECTED_VALUE

[e] VALUE_INTEGER_I

[1] VALUE_INTEGER_I

[2] VALUE_INTEGER_I

[3] VALUE_INTEGER_I

[4] VALUE_INTEGER_I

[5] VALUE_INTEGER_I

[6] VALUE_]NTEGER_I

[7] VALUE_INTEGER_I

[8] VALUE_INTEGER_I

[9] VALUE_INTEGER_I

EVENT_TYPES ::= IMPLICIT SEQUENCE

EVENT_CLASS EVENT_CLASSTYPES

EVENT CLASS_TYPES ::= CHOICE

LOCAL [0] EVENT_IDENTIFIER_TYPES

REMOTE [1] EVENT_IDENTIFIER_TYPES

EVENT_IDENTIFIER_TYPES ::= CHOICE

NS_CHANGED

NS_NULL

DUPLICATE_ADDRESS

FAULTYTRANSMITTER

XMtT_QUEUE_THRESHOLD_EXCEEDED

RECEIVE_QUEUE_THRESHOLDEXCEEDED

WATCH_DOG_TIMEOUT

FROZEN

TOKENLOST

DUAL_TOKEN

MAX_RETRY_ENCOUNTERED

BAD_MESSAGE_SENT

[e] VALUE_INTEGER_I

[I] VALUE_INTEGER_I

[2] VALUE_INTEGER_I

[3] VALUE_INTEGER_I

[4] VALUE_INTEGER_I

[5] VALUE_INTEGER_I

[6] VALUE_INTEGER_I

[7] VALUE_INTEGER_I

[8] VALUE_INTEGER_I

[9] VALUE_INTEGER_I

[le] VALUE_INTEGER_I

[11] VALUE_ADDRESS_I

EVENT_ENABLE_BITS ::= BIT STRING

NS_CHANGED (0),

NS NULL._ (1),

DUPLICA-T'__ADDRESS (2),

FAULTY_-_RANSMITTER (3),

XMIT_QUEUE_THRESHOLD_EXCEEDED (4),

RECEIVE_QUEUE_THRESHOLD_EXCEEDED (5).

WATCH_DOG_TIMEOUT (6),

FROZEN (7),

TOKEN_LOST (8),

DUAL_TOKEN (9),

MAX_RETRY_ENCOUNTERED (le)

BAD_MESSAGE_SENT (11)

-- Where 1 is enobled

